UNIVAC 1107

TECHNICAL BULLETIN.

UNIVAC 1107

CENTRAL COMPUTER

November, 1961

CONTENTS

1. UNIVAC 1107 THIN-FILM MEMORY COMPUTER. + s ¢ e vttt evvan onesns 1-1
General Description . oo in ittt e i i i e e e 1-1
FeatUIES & it i i ittt i ittt tt ettt 1-2
Peripheral EQUipment ... vii ittt ittt ettt et bt 1-2

2, CENTRAL COMPUTER ..ttt ittt tetenrennnennneononnnonnnas 2-1
R €1 T 2-1

Magnetic Film Memory ... vveiveeineevnnnon conenonnnennan 2-1
Core Memory ..o veiiiiiinne et ennnnns e e 2-1
Storage Allocation .. ovs i ittt it e ittt e 2-2
L] 111 2-4
Indexing Uit ..ot tiin ittt i ittt ienes teeennee ans 2-4
(=10 41T £ Pt 2-5
Initial Load Operation (Automatic Bootstrap)ccvvvun.n. 2-5
2T 117111 T 2-5
1] U 2-6
Overflow and Carry Designators . . vviin i v i et iiinnenenneens 2-6
Arithmetic Registers . .v v v v v v ii e ittt ittt ienannns 2-1
Partial Word Transfers. v v e i et vnin i ennnneneaneenns 2-7
Floating Point Arithmetic v it iin i nennneas 2-7
0T L0111 6] T 2-1

3. DATA, CONTROL AND INSTRUCTION WORDS .+ oot vvvenrocncnnsoes 3-1
Data Representationc.0 e ciie it tiiienvennnenennnns 3-1
Control Words and Control Registersc v v vvviiiiieennnn 3-1

Index Registers .vvviiii i it iiiiiiiiinneeenennennnsns 3-2
Arithmetic Registers.u v v iv i ittt ieieninneeonenonennes 3-2
L 1 - € 3-3
Input-Output Access Control Registersovvviviiinnnn 3-3
Instruction Word oo v viiiiii ittt s ittt e 3-4
Two- Address Accessibility .o vvrininen it i iieiienennnnes 3-7

4. INTERNAL DATA PATHS ..t ittt v envennronnoscoeos sonnenns 4-1
Execution Cycle cu v vrin ittt ittt ittt 4-1
j Designator Unequal t0 16 oF 17 ..ot viiie it it et inennnennnns 4-3
j Designator Equal 0 16 oF 17 .. iv i i vt i ii it eeneennnens 4-3
Indirect AddresSing v vv vt ittt v it i ettt eierereannneenns 4-3

Glossary and Conventions ... vevsvin e e nennonneennnenss 4-6

5.

6.

7.

8.

9.

10.

1.

12,

13.

14.

TRANSFER INSTRUCTIONS

I T
Store ..o,

ARITHMETIC INSTRUCTIONS

Addition et i e
Multiplication

Division

Multiple Add and Subtract

LOGICAL INSTRUCTIONSc..u.

SHIFT INSTRUCTIONSot iannnnns

BRANCHING INSTRUCTIONS ~ SKIP

O IR}

. « e e s e .. s e e
. s e e LR . ..
. .. L N R RN Y .
e e s et s a0 00 e .
R A I I R .. .
e e e e 0 0 s . e .

. « o .
CECERY L A A Y DO

. . . “« e
“ee e s e e e e
.

Y- (] e

BRANCHING INSTRUCTIONS - JUMP,

BLOCK TRANSFER INSTRUCTION

SPECIAL INSTRUCTIONSce0 v o

DR “ e e
PR NS . .
e a0 e 0 s 0 0 s e

FLOATING POINT INSTRUCTIONS v vennunns e

CONTROL CONSOLE

Automatic Programming e e e

APPENDIX A — INSTRUCTION REPERTOIRE

GENERAL DESCRIPTION

The UNIVAC® 1107 Thin-Film Memory Computer
signals the arrival of a third generation of com-
puters since it marks the first time thin-film
memory is used in a commercially available data-
processing system. Thin-film memory — the most
significant technological achievement since solid-
state circuitry — brings to commercial and scien-
tific computer users data control and storage tech-
niques never before available.

Designed and developed as a solid-state, general-
purpose system, the UNIVAC 1107 Computer util-
izes advanced data-processing methods. Its con-
cept of design centralizes the many controls —
necessary for high efficiency input and output,
concurrent computation, and internal transmission —
within the thin-film memory, the ‘‘heart’’ of the
system.

As a direct result of its logical design,the UNI-
VAC 1107 Computer can reliably and economically
process a wide range of applications in either an
on-line or an off-line mode. Equally important is
the rate of speed at which these applications can
be processed: internal speeds of the UNIVAC 1107
System are measured in nanoseconds — billionths
of a second. Accordingly, the system is particular-
ly well equipped to handle real-time applications.

UNIVAC thin-film, also known as magnetic film, is
manufactured by deposition of vaporized magnetic
alloys on thin planes of glass under the influence
of a strong magnetic field. Because these deposits
are made in extremely thin layers, the direction
of their magnetic field can be switched in an inter-
val of several nanoseconds. This feature allows
information to be stored or retrieved at extremely
high rates of speed. Immediate benefits include
substantial savings in processing time, reduced
power requirements, and miniaturized storage units.

Basically, magnetic-film memory consists of an
array of minute circular metallic elements, several

1. UNIVAC 1107 THIN-FILM
MEMORY COMPUTER

millionths of an inch thick, deposited on planes
(substrates) of glass. Functionally, each metallic
deposit (or ‘“dot’’) can be compared to the ferrite
core employed in conventional storage units.
Thirty-six ‘“dots’’ are assigned to each of the 128
words in the thin-film or control memory.

Instead of wires physically threading ferrite cores,
the circuitry for magnetic film is printed on MYLAR*
tape, and then wrapped around glass substrates.
Figure 1-1 depicts a glass substrate after deposi-
tion of the metallic alloy.

Employed primarily in a control capacity, magnetic-
film memory provides multiple accumulators, index
registers, control-registers, and input-output regis-
ters. As a result of this arrangement, intricate
input-output, arithmetic, and housekeeping oper-
ations — which formerly required extensive data
manipulation — have now become little more than
routine programming functions.

Figure 1-1. Substrate of Magnetic Film.

* Registered trademark of the E.I. duPont de Nemours and
Company for its polyester film.

FEATURES

Among the more prominent features of the UNIVAC
1107 Data-Processing System are:

m A magnetic-film memory — the most ad-
vanced data storage device on the market today.

m A ferrite-core memory for instructions and
operands, available in capacities of 16,384
words in one bank or 16,384 words and
multiples thereof (up to 65,536 words) in
two separately accessed banks.

m Six hundred and sixty-seven nanosecond
(0.667 microsecond) cycle time for film
memory, complemented by an effective 2-
microsecond cycle time for core memory
(overlapping of two banks).

m Sixteen bidirectional input-output chan-
capable of concurrent input-output
transmissions at a maximum rate of 250,000
words (1,500,000 characters) per second.

nels,

m Automatic programming, including ALGOL,
COBOL, FORTRAN, simulators and assem-
blers.

m An executive system for integrating the
subroutines required in the processing of
multiple programs.

w A highly versatile instruction word that
provides for indexing, indirect addressing,
automatic incrementation of the modifier,
and partial word transmission, as well as
specification of both an operand and an
arithmetic register.

m A repertoire of instructions that frequently
combines two or more data-processingoper-
tions in a single command.

PERIPHERAL EQUIPMENT

The input-output section of the UNIVAC 1107 Com-
puter System accommodates many different types
of peripheral equipment. Some external units, such
as magnetic drum and tape units, may be used to
provide auxiliary storage. Other devices may serve
as input-output equipment; these would include
card and tape units, printers, and document-sensing
devices. Additional special peripheral equipment
can provide information links to other systems.

Standard on-line peripheral equipment for the UNI-
VAC 1107 System consists of:

Magnetic Drum Storage Systems (FH880 Drums)
Magnetic Tape Units:
UNISERVO IIA Units (Remington Rand UNIVAC
format)
UNISERVO IIA Units (IBM format)
UNISERVO Il Units

Card Readers (80-column or 90-column)
Card Punches (80-column or 90-column)
High-Speed Printer
Paper Tape Reader
Paper Tape Punch

Conventional off-line operations, such as card-to-
tape conversions, can be performed on-line with
negligible interruption of running programs. In this
type of operation, data flows to and from an as-
signed memory area. In effect, this memory area
serves as a data transfer buffer, functioning in-
dependently of the main program.

The capacity of the UNIVAC 1107 System to ab-
sorb many off-line operations eliminates the need
for special equipment. Appreciable savings in
floor space, power requirements, and rental costs
are then realized.

The Central Computer in the UNIVAC 1107 System
consists of four major sections: storage, control,
arithmetic, and input-output.

STORAGE

Regardless of the selected core memory capacity,
each UNIVAC 1107 System is equipped with a
separate magnetic-film memory., Consequently, the
storage section of the Central Computer encom-
passes both a magnetic-film memory and a core
memory, along with their respective address, trans-
fer, and control circuits.

Magnetic-Film Memory

Magnetic film in the UNIVAC 1107 System provides
a 128-word control memory. Each word, is capable
of storing 36 bits of information. The film array is
such that word selection determines which 36 bits
are to be accessed. Operating in the parallel mode,
read access time for any film-memory address is
167 nanoseconds (0.167 microsecond); complete
cycle time is 667 nanoseconds.

The magnetic-film memoty is the most frequently
used area in the entire UNIVAC 1107 Data-Pro-
cessing System. As a general rule, in the time it
takes to make a single reference to core memory,
film memory will have been referenced threetimes.
Carried a step further, approximately 1.5 million
references per second can be made to film memory.*

Core Memory

Core storage in the UNIVAC 1107 System con-
sists of small doughnut-shaped magnetized cores
of ferrite material. Depending upon its direction of
magnetic orientation, each core (similar to the
metallic ‘‘dot’’ in film memory) is capable of repre-
senting one of two stable states: on or off (1 or 0).

The cores themselves are arranged in planes.
Wires thread the planes in a pattern similar to that
of the vertical and horizontal coordinate lines on a
map. The intersection of two wires determines a
specific core. Data stored in core memory is ac-
cessed via word selection and read in the parallel
mode.

*In this case references to core memory are overlapped to
provide an efficient communications rate of 500,000 words
per second.

2. CENTRAL COMPUTER

UNIVAC 1107 core memory is available in options
of 16,384 words in one bank; or, 16,384, 32,768,
49,152, or 65,536 words in two banks. Read access
time for any core-memory address is 1.8 micro-
seconds; complete cycle time is 4.0 microseconds.

In a two-bank installation, regardless of the selec-
ted memory capacity, the full range of lower-order
addresses (0 through 32,767) apply to bank one, while
the full range of higher-order addresses (32,768
through 65,535) apply to bank two.

To illustrate this principle, assume a two-bank in-
stallation has a total storage capacity of 32,768
words., As shown in Figure 2-1 (Option C), the
addresses available tothe programmer are 0through
16,383 in bank 1 and 32,768 through 49,151 in
bank 2, for a total of 32,768 locations. Note that
bank 1 does not end at address 16,383 and bank 2
begin with address 16,384, Instead, each bank has
the full complement of addresses. In this manner,
the system lends itself to future expansion.

BANK 1 | BANK 2
i
1
E|D|c|B[A 000000 | 032768
008191 | 040959
008192 . 040960
016383 . 049151
|
016384 049152
024575 | 057343
024576 057344
032767 | 065535
| .'
OPTION | CAPACITY/WORDS | BANK
A | 16,384 1
B | 16,384 1,2
c | 32,768 1,2
D : 49,152 1,2
E ! 65,536 1,2 |
Figure 2-1. Core Storage Options.

BANK 1 BANK 2
DECIMAL OCTAL BINARY DECIMAL OCTAL BINARY
000000 | 000000 0 000 000 GO0 000 000 032768 100000 1 000 000 000 000 o000
008191 017777 0 001 111 111 111 111 040959 117777 1 001 111 111 111 111
008192 020000 0 010 000 000 000 o000 040960 120000 1 010 000 000 000 000
016383 | 037777 0 011 111 111 111 111 5049151 137777 1 011 111 111 111 111 =
e ACTUAL ADDRESS ACCRSSED 1 |
016384 | 040000 0 100 000 000 000 000 049152 140000 1 100 000 000 00O 000 i
024575 057777 0 101 111 111 111 111 057343 157777 1101 111 111 111 111 i
024576 | 060000 0 011 000 000 000 000 057344 160000 1 011 000 000 000 000 E
032767 | 077777 0 111 111 111 111 111 3065535 177777 1 111 111 111 111 111 i—-’ ;
! PROGRAM REFERENCED ADDRESS !
T {

Figure 2-2. Decimal, Octal, and Binary Values of Core Storage Addresses

In a system that uses less than maximum storage,
an address that exceeds the capacity of a selected
bank will automatically reference an address in
that same bank with fewer significant bits. For
example, if memory capacity is 32,768 words and the
programmer inadvertently references address 65,535,
the last address for maximum storage, the program
will automatically access location 49,151, the
highest actual address in bank 2.

The principal advantage of a two-bank installation
is that by simply storing data in one bank and in-
structions in the other, core-memory references in
consecutive instructions can be overlapped. Under
this arrangement, the cores that contained the cur-
rent instruction’s operand can be read, while
the cores in the alternate bank, containing the
next instruction, are being read. The net result
is an effective cycle time of 2.0 microseconds
(see Figure 2-3).

Storage Allocation

The addresses of the 128 locations in film memory
are identical to those of the first 128 locations
in core memory. Distinction between memory units
is based on whether the address is specified by
the program-address register (P) or a designator
in the instruction in the Program Control Register (PCR).
If the address of a location that can be found in
both film memory and core memory is contained in
P, an instruction word is being accessed. Con-
sequently, program control will automatically refer-

ence the appropriate location in core memory. Con-
versely, if the address is specified via the PCR,
a data word, a constant, or a control word, is
stipulated. In this case, program control auto-
matically references film memory.

Data Instruction
Cycle Bank Bank
Time 1 9
Microseconds
2 READ
2 RESTORE
_____ - Overlap .
Effective
2 READ READ }Cycle Time
______ 1 _|)of2pus
2 RESTORE |RESTORE
2 READ READ
______ S U S

Figure 2—3, Overlapped Core-Memory References

Magnetic-Film Memory

The 128 locations in magnetic-film memory are
reserved for data words, constants and control
words. These locations can only be accessed by
load, add, mask, and similar instructions; that is,
an instruction that designates an internal oper-
ation. For example, when a programmer specifies
that the contents of location 20 are to be stored
in location 115, the contents of film-memory loca-
tion 20 will be transferred to film-memory location

115.

A particular location in film-memory is accessed
via designators in the instruction in the PCR. The
contents of the specified location are then trans-
ferred either to the arithmetic section or to another
memory location,

An input-output instruction, that is, one that speci-
fies transfers to or from peripheral equipment, will
only reference core memory. This means that when-
ever the contents of a film-memory location are to
serve as output, they must first be transferred to a
core-memory address. Similarly, input data that is
to be operated on arithmetically must be trans-
ferred first to core memory, and then, tofilm memory.

In this respect, the UNIVAC 1107 incorporates a
unique safety feature. In refusing input-output
instructions direct access to magnetic-film memory,
the system precludes the possibility of a program-
mer inadvertently overlaying input data on control-
memory data essential to computation.

As employed in the Central Computer, magnetic
film supports a comprehensive data-processing
network. For example, many of the system’s
advanced processing and input-output options re-
sult from the 63 magnetic-film locations that pro-
vide:

Index registers

Arithmetic registers

Input-output access control registers
Temporary program address register
Real-time clock

Mask register

Repeat count register

The programmer is free to use the remaining loca-
tions as auxiliary storage for data and constants.

Core Memory

Just as film memory is reserved for data words
and is protected from external operations, the
first 128 locations in core memory are reserved
for instruction words and are fully protected from
all internal write operations. Because of this
logical design, these locations are particularly
well suited for a bootstrap routine.

Individual instructions or a bootstrap routine may
be loaded into the first 128 locations* in core
memory only by means of input peripheral equip-

* The bootstrap routine may utilize up to 224 locations in
core memory.

CONTROL MEMORY (Thin-Film)

CORE MEMORY

BANK 1

BANK 2

128
36-bit Words
0.667us Cycle Time

8,192, 16,384 or 32,768
36-bit Words
2us Cycle Time (effective)

8,192, 16,384 or 32,768
36-bit Words
2us Cycle Time (effective)

Zg : st So y S] i Z] 32 E 22
i ! (Storage Address Storage Address ; (Storage Address i
(1/0 Register) | Register) (Register) I (l/0 Register) Register) { (1/0 Register)
Figure 2-4. UNIVAC 1107 Thin-Film Memory Computer Storage

ment. Once stored, the instructions can be al-
tered only by reading new instructions, via peri-
pheral equipment, into the same locations. Behind
this stipulation lies the general rule that when-
ever the designators in an instruction specify an
address that may be found in both film memory and
core memory, the program will reference film memory.

Instructions stored in the first 128 core-memory
locations are accessed via P, the program address
register. The contents of the specified location
are then transferred to PCR, the program control
register, for execution. Note that entry into PCR
can only be gained from core memory,

The next 75 core-memory locations (addresses 128
through 202) are reserved for interrupts and the
external status word. The remaining locations in
core memory (addresses 203 through 65,535 when
maximum capacity is used) may be employed as
the programmer desires.

CONTROL

The control section of the Central Computer com-
prises the program address register, the program
control register, the storage class control decod-
ing unit and the indexing unit. In addition, this
section includes the circuits which supply the
control signals necessary to synchronize the
execution of instructions.

Control Memory (Thin-Film)

The program address register, P, normally con-
tains the address of the next instruction, except
during a repeated sequence operation when it
contains the remaining number of times the in-
struction is to be executed. The program control
register, PCR, contains the instruction currently
being executed. The storage class control decod-
ing unit, SCC, decodes the effective operand ad-
dress for subsequent referencing to magnetic-film
memory or core-memory bank 1 or bank 2.

Indexing Unit

The indexing unit, containing an adder and sens-
ing circuits, is shared by both program control
and input-output control. Program control uses the
indexing unit to: advance the P-register by 1 each
time an instruction is executed (provision is thus
made for sequential execution of instructions); to
count down and control repeated sequences; and
to perform address modification, and incrementa-
tion.

The indexing unit performs address modification
as 18-bit one’s complement addition. Because the
maximum operand address utilizes 16 bits, two
binary 0’s are placed to the immediate left of the
operand address. After modification, the two most
significant bits in the effective operand address
are dropped and the 16-bit address is transferred
to SCC.

CORE MEMORY

1
! 128 thirty-six bit words ! e e e e -
' 0.557:scyc,etime ' I 8,192, 16,384 or 32,768 P 8,192, 16,384 or 32,768 ;
e e i { ___Thirty-six bitwords 4 __ _ Thirty-six bitwords ___
| Zo i So | : S I Zy i S2 H Z2 :
TTExTTTTTTTTTTTTITTTT Ik Sy S '_"T""" "T_ ''''

SCC
INDEXING [P
UNIT
— " PROGRAM
PCR CONTROL

Figure 2-5. Control Paths and Units

Input-output control uses the indexing unit to
specify both the number of words to be transferred
and the locations to or from which data will move.

Interrupts

Interrupts are special control signals which divert
the attention of the computer from the main pro-
gram to a particular event or set of circumstances.
In the UNIVAC 1107 System, provision is made for
several classes of interrupts.

There is an external interrupt for each of the 16
input channels. These interrupts enable peripheral
equipment to request access to the Computer.
There are internal interrupts corresponding to
each of the 16 input access-control words, 16 out-
put access-control words, and the 16 external
function words. An internal interrupt is also pro-
vided for the real-time clock.

An additional external interrupt is available for
real-time system synchronization. This interrupt
is independent of the input-output channels. It
accepts signals of any frequency from an external
generator which may be a supplementary real-time
clock for the Central Computer or the master clock
for a multiple-computer installation.

In the UNIVAC 1107 System, interrupts need not be

rupt is associated with a fixed address which auto-
matically provides entry into a subroutine cor-
responding to the event or circumstances that
caused the interrupt.

Initial Load Operation (Automatic Bootstrap)

An initial load operation is provided for initial
loading of programs and for program restoration.
The initial load operation will read a maximum of
224 words from peripheral equipment into the first
224 locations in core memory. Upon termination of
the reading, program control is transferred to the
program contained within these 224 words. The
initial load operation may be initiated manually or
by program control.

ARITHMETIC

The arithmetic section of the Central Computer in-
cludes threshold sensing circuits, counters, arith-
metic sequence control circuits, a shift matrix,
temporary storage registers, and an adder.

The threshold sensing circuits determine the
equality and relative magnitude of the contents of
specified registers. The counters are employed
during multiply and divide operations. Sequence
control circuits govern the execution of add, sub-

tested to reveal their source. Instead, each inter- tract, multiply, divide, shift, and test-relative-
CORE MEMORY
_ Control Memory (Thin-Film) 2us Effective Cycle Time
T i BANK 1 BANK 2 |
L L8 thity-six bitwords | j—————BANKD _____ ——————— s ————— i
, 0.667 s cycle time I I 8,192, 16,384 or 32,768 Iy 8192,16,384 0r 32,768 |
o ' l__._IDiﬁv_-si_x b“_w_f"d_s___ ! ‘r____IE"_W_'WEiLWEd_S___}
___Z0 _j___So___j L__3 ____1___ ___-1l l___s?____lr__ Z2 __1
T H R F ki 1
_______ i
i R e S |
e - R At L
| o=l |
| | r SCC 1 |
i] R I
‘ I ! |
| INDEXING |-~ —————————— g b } X-REGISTER |
| | - T T 1 |
1 | UNIT '_‘“"___7 L | A[
] ______ ' ‘
| 1 = ' ARITHMETIC
——— - == |
N | raoctan | o NemioRe &
T PCR == —————— ! ! CONTROL
_____ 1 —— — — —— —

Figure 2-6. Arithmetic Paths and Units

magnitude instructions. The shift matrix shifts
data from 0 through 36-bit positions in a shift oper-
ation.

During the actual execution of an arithmetic in-
struction, temporary storage registers within the
arithmetic section itself are employed, The Central
Computer first determines that the arithmetic sec-
tion will be utilized in a given operation. Data is
then transferred automatically, via the X-register®
to a temporary storage register of the arithmetic
section. The X-register and the temporary storage
registers cannot be addressed by the programmer.

Adder

The adder in the UNIVAC 1107 System is a 36-bit
one’s complement subtractive adder (mod 236 — 1),
Additions are performed in the following manner:

Assume the value 2 is to be added to the value
6. In core storage, the binary equivalents of
these values are:

000000000000000000000000000000000110 = 6
000000000000000000000000000000000010 = 2

In executing the instruction, the adder first
complements the value 2:

1111111120101 212180211 212112211101 =
one’s complement of 2

Next, the adder subtracts the one’s complement
of 2 from the value 6. The subtraction itself in-
volves an ‘‘end-around borrow,’”’ whereby the
process of borrowing from the digit to the left
may carry from the leftmost digit in the minuend
(value 6) to the rightmost digit in the remainder.
It will continue moving tothe left in the remain-
der until the borrow is satisfied:

— (U RN B R R R B HRRA0 110 = 6

1111311111212 28 2201 182121112111111101 =
one's complement of 2

0
00000000000000000000000000000000100Y, = 8

L__end-around borrow

In the example, the binary 1 in digit position
3* in the subtrahend cannot be subtracted from
the binary 0 in the corresponding minuend posi-
tion. If the subtraction is to continue, a binary
1 must be borrowed from a digit to the left in
the minuend. However, digit positions 4 through
35 all contain binary 0’s., At this point an end-
around borrow occurs; that is, the needed binary
digit is taken from the remainder. As it happens,
the first bit position in the remainder contains
the binary 1 needed to satisfy the borrow.

After the end-around borrow, computation ad-
heres to the rules of binary subtraction. The
remainder is the sum of the values 6 and 2.

Overflow and Carry Designators

Associated with the adder are two special designa-
tors: the overflow designator and the carry designa-
tor. Eight instructions affect the two designators:
the four basic add instructions and the four basic
subtract instructions — operation codes (in octal
notation) 14 through 21, 24 and 25.

Upon execution of one of the eight instructions,
both designators are cleared. After addition has
been performed, the designators remain in their
respective states (set or clear) until another one
of the eight instructions is given. Both designators
are set in time to be tested immediately after the
affecting instruction.

The overflow designator is set upon generation of a
significant bit in the sign position. This condi-
tion can only arise when the values that are added
have like signs. Specifically, a positive result
of two negative quantities will set the overflow
designator, as will a negative result of two posi-
tive values.

The carry designator is set whenever an end-around
carry (no borrow) is generated. The condition of
the carry designator is determined by the following
rules:

POSITIVE i NEGATIVE
VALUES RESULT | RESULT
A positive and U negative Set | Clear
1
A negative and U positive Set E Clear
A negative and U negative Set E Set
A positive and U positive | Clear | Clear

* X is the 36-bit exchange register providing entrance and exit
to the arithmetic section.

2-6

* Reading from right to left the bit positions are numbered
0 through 35.

The following additions will always set the carry
designator:

1. Any number added to its complement
2. All 0’s added to all 1’s.

3. Any number added to all I’s.

4. All I’s added to all 1’s.

Arithmetic Registers

Sixteen arithmetic or A-registers, directly address-
able by the programmer, are available for storing
operands and results of arithmetic operations.
These 16 registers are not to be confused with the
non-addressable temporary storage registers within
the arithmetic section itself.

As previously pointed out, during actual computa-
tion temporary storage registers in the arithmetic
unit are utilized. However, these registers are not
capable of retaining initial data or final results
from one instruction to another. Consequently, all
such information is transferred automatically to
the A-registers specified in the instructions. The
16 A-registers, then, function as accumulators.

Partial Word Transfers

Word transmissions between the arithmetic section
and core memory can be directly segmented into
halves, thirds, or sixths. This flexibility allows
the Central Computer to operate upon one ofeleven
possible portions of a word or the entire 36-bit
word itself, as shown in Figure 2-7. The selected
data in a partial word transfer from memory is
shifted automatically to lower-order positions in
the arithmetic section. By means of this feature,
computation can be performed immediately after
the partial words have been transferred, without
first calling for such housekeeping instructions
as shifts.,

Along with partial word transfers, special add and
subtract instructions are available to the program-
mer, Upon execution of one of these instructions,
parallel addition or subtraction of two or three
fields within a single data word is performed.

Floating-Point Arithmetic

In the UNIVAC 1107 System, floating-point arith-
metic has been made a hardware, rather than a
software or programming, function. Seven instruc-

tions are devoted exclusively to floating-point
arithmetic, Addition, subtraction, and multiplica-
tion always store a 2-word result. Both results
contain their appropriate characteristics. Division
produces a quotient and a remainder, both of which
are in the floating-point format. The 2-word results
of these floating-point instructions lend them-
selves to programmed double-precision arithmetic.

INPUT-QUTPUT

The input-output section of the Central Computer
provides the data paths and control circuits neces-
sary fordirect communication between core memory
and peripheral equipment. Data transfers may be
scheduled over a maximum of 16 bidirectional in-
put-output channels. When 16 channels are oper-
ating concurrently, word transfers can be multi-
plexed to provide a maximum communication rate
of 250,000 words (1,500,000 characters) per second.
Of course, such high-speed input-output data trans-
fer rates are rarely maintained for more than brief
periods.

The main computer program establishes the initial
communications path between core memory and the
peripheral equipment. From this point on, individual
word transfers are governed by input-outputaccess-
control circuits. These circuits monitor the num-
ber of words tobe transferred and specify the core-
memory addresses to and from which data are
transmitted. In this way, the access-control cir-
cuits allow the Central Computer to resume execu-
tion of the main program.

FULL WORD OR 36-BIT TRANSFER

35 0

1/2 WORD OR 18-BIT TRANSFER

35 18117 0

1/3 WORD OR 12-BIT TRANSFER

|
35 24123
|

12‘11 0

1/6 WORD OR 6-BIT TRANSFER
T T T

4

33029 2473 1817 1211 65 0

i

Figure 2-7. Partial Word Transfers

DATA REPRESENTATION

Internal operations in the UNIVAC 1107 System
are performed in the parallel binary mode. Since
the machine language is binary, data, control, and
instruction words must be expressed in pure binary
form. However, for convenience in programming,
as well as in monitoring internal operations, octal
notation can be used.

The basic data word in the UNIVAC 1107 System,
as shown in Figure 3-1, utilizes 36 binary digit
positions. Position 35 contains the sign bit, bit
position 34 is the most significant, and bit posi-
tion O is the least significant.

35 34‘33 32‘31 30.29 28 27,26 25 24 23 22 21 20 19,18 17 16 15.14 13 12,11 10,09 0807 06.05 04 03 02 01,00
i e i i i i i i

Figure 3-1., Basic Internal Data Word.

With one position reserved for the sign, a total of
35 binary digit positions may be used to represent
a given quantity. The largest number that can be
accommodated in the UNIVAC 1107 System (ex-
clusive of floating-point and double-precision
arithmetic) is 235 — 1 or 34,359,738,367.

Positive binary numbers are obtained in the follow-
ing manner., The absolute value of the desired
number is placed in the low-order positions of a

DATA, CONTROL,
AND INSTRUCTION WORDS

given register. A 0 is placed in bit position 35 and
extended right until a binary 1 is reached.

Example

+9 =000 000 000 000 000 000 000 00O 000 000 001 001

Negative binary numbers, on the other hand, are
arrived at by complementing (substituting a binary
1 for each binary 0 and a binary 0 for each binary
1) the positive binary configuration of the desired
negative value. Applying this rule, a negative 9
is obtained by complementing the binary representa-
tion of a positive 9.

Example

-9 =111 111 111 111 111 111 111 111 111 111 110 110

NOTE: Positive numbers are characterized by a 0
in bit position 35 and negative numbers
by a 1 in bit position 35. Also, in posi-
tive numbers the first significant bit posi-
tion contains a 1 and in negative numbers

it contains a 0.
CONTROL WORDS AND CONTROL REGISTERS

Special 36-bit control words are associated with
several types of film-memory registers. Data trans-
ferred to these registers should adhere to the for-
mat of the corresponding control word. Data that
is to enter a register which is not associated with
a special control word is transferred in the format
of the basic data word.

Index Registers

Fifteen 36-bit registers are available in thin-film
memory for index register modification and index
counts. Index register word format is as follows:
The right half (Q-portion) of the index register
word stores the modifier which may be up to 18-
bits (including sign) in length; the left half (the
A portion) of the word stores an increment which
can be up to 18-bits (including sign) in size. The
index register word format is shown in Figure 3-2.

35* A 18/17* Q 00

*Sign Positions

Figure 3-2. Index Register Word.

When an indexing operation is indicated, the ap-
propriate modifier is applied to the current in-
struction’s base execution address. The result is
the effective operand address (before indirect ad-

dressing, if specified). Then, depending upon the
value of a special designator in each instruction,
the increment is applied to the modifier. In this
way, provision is made for varying the extent of
address modification in subsequent indexing oper-
ations.

The leftmost bit in both the modifier and the in-
crement (or decrement) portions of the index regis-
ter word specifies these quantities as positive or
negative.

Arithmetic Registers

Sixteen magnetic-film locations provide interim
storage for arithmetic operands and results. Be-
cause four of these locations overlap addresses
assigned to index registers (Table 1), the Central
Computer in the UNIVAC 1107 System is capable
of performing highly sophisticated address modi-
fication. For example, in a table look-up applica-
tion, the results of a given calculation can im-
mediately be applied, as a modifier, to a base
address.

DECIMAL ADDRESS | OCTAL ADDRESS FUNCTION
00000 000000 Unassigned (depends on operation)
00001-00015 000001-000017 Index Registers (15)
> 00012-00027 000014-000033 Arithmetic Registers (16)*
g 00028-00031 000034-000037 Unassigned
5 00032-00047 000040-000057 Input Access-Control Words (16)
= 00048-00063 000060-000077 Output Access-Control Words (16)
P 00064 000100 Real-Time Clock
"f 00065 000101 Repeat Counter
g 00066 000102 M Register R Registers
v 00067 000103 T-Register (temporary storage for P)
00068-00079 000104-000117 Additional Special Registers
00080-00127 000120-000177 Unassigned
00000-00127 000000-000177 Unassigned **
00128-00143 000200-000217 External Request Interrupts (16)
E 00144-00159 000220-000237 Input Data Termination Interrupts (16)
g 00160-00175 000240-000257 Qutput Data Termination Interrupts (16)
g 00176-00191 000260-000277 Function Termination Interrupts (16)
w 00192-00199 000300-000307 Error Interrupts (8)
g 00200 000310 Real-Time Clock Interrupt
o 00201 000311 External Status Word
00202 000312 External Synchronization Interrupt
00203-65535 000313-177777 Unassigned Core-Memory Addresses
*Memory addresses 000014-000017 are also addressable as index registers
**Normally reserved for Bootstrap Routine.

Table 1. Storage Allocation of Film and Core Storage Locations

The format of data that is to be loaded into an
arithmetic or A-register is contingent upon the
type of arithmetic operation to be performed. In
the case of fixed-point arithmetic, operands need
only conform with the format of the basic data
word. Floating-point arithmetic, however, requires
a word format of its own. The floating-point word,
depicted in Figure 3-3, contains a 27-bit mantissa,
an 8-bit characteristic, and a sign bit.

Repeat Count

The second of the four assigned R-registers (refer-
red to as the ‘‘K-register’’) provides the repeat
count during the execution of an instruction in the
repeat sequence mode. Data that is to enter this
register should be in the format of the repeat count
word, as shown in Figure 3-4,

= . .*1
oo lCharacteristic

= Mantissa
35|34 27|26 00

* Biased by 128 (200 octal)

Figure 3-3. Floating Point Word

As previously mentioned, the A-registers function
as 16 accumulators; that is, they retain the results
of computation from one instruction to another.

R-Registers

Sixteen film-memory locations are designated as
‘““R-registers.”” Twelve of these registers may be
used in any way the programmer desires except,
that they, as well as all other film-memory loca-
tions, cannot be employed for storing instructions.
As shown in Table 1, the remaining four R-regis-
ters are assigned the following specific functions:

Real-Time Clock

One of the four assigned R-registers serves as the
real-time clock. Every millisecond (the exact tim-
ing is 2°10 seconds), the 36-bit number contained
in th Figure 3-5. T-Register Word. by 1. When the
count reaches 0, an internal interrupt occurs which
causes the main program to jump to address 200
(octal 310). Therefore, the programmer must either
load the real-time clock register or provide for
recovery from the automatic interrupts generated
by the clock every 2710 seconds.

The real-time clock, along with the other R-regis-
ters, the index registers, and. the arithmetic regis-
ters, may be referenced directly either in the oper-
and portion of an instruction (u address)or in the
arithmetic register designator (a address). (This
is known as 2-address accessibility, and it is ex-
plained further on page .) In respect to the real-
time clock, two-address accessibility simplifies
the setting and subsequent reading of the count.
The real-time clock is not associated with a spe-
cial control word.

unassigned k
35 1817 00

Figure 3-4. Repeat Count Word.

Initially, the k portion of this control word con-
tains the total number of times a particularinstruc-
tion is to be executed. Then, during the repeat
operation itself, k is reduced by 1 each time the
instruction is executed. Provision is thus made for
a ‘‘running’’ count of the number of execution times
remaining in sequence. When k reaches 0, the re-
peat operation is terminated.

In certain applications it may be necessary to re-
tain the initial repeat count. To meet this pro-
gram requirement, load the repeat count (the total
number of times an instruction is to be executed)
into the unassigned left half of the repeat count
word as well as into the k portion.

Mask Register

The third assigned R-register contains the mask
(bit pattern) used in certain logical and test in-
structions. Data that is to enter the mask or M-
register, is in the format of the basic data word.

Temporary Program Address Register

The fourth R-register assigned a specific function
is employed as a temporatry storage register (T-
register) for the address of the next instruction.
Utilized only during a repeat operation, the pro-
gram address is stored in the next instruction
portion of the T-register word. The format of this
particular control word is presented in Figure 3-5.

|
unassigned | Next Instruction

35 18)17 00

Figure 3-5. T—Register Word
Input-Output Access Control Registers

Thirty-two locations in film memory are used to
maintain control over data transfers between the

Central Computer and peripheral equipment. Input-
output access control wotds are associated with
this group of registers. These words, along with
the function words necessary to initiate input-
output data transfers, are discussed inthe UNIVAC
1107 Input-Output Manual. At this point, it is
sufficient to note that thirty-two film-memory loca-
tions (addresses 32 — 63, Table 1), are reserved
for this purpose.

INSTRUCTION WORD

The UNIVAC 1107 Thin-Film Memory Computer is
controlled by a program of instructions stored in
memory. Each instruction consists of various parts
called designators. These designators are identi-
fied by letters, as shown in Figure 3-6.

f i a b |hii u
35 30129 26(25 22{21 18|17/16|15 0
f (6 bits) - Operation Code

j (4bits) — Operand Instruction or Minor Operation Code*

a (4bits) - A, B, or R-register, or Input-Output Channel
Designator*

b (4 bits) - B-Register Designator

h (1bit) - Incrementation Designator

i (Ibit) =~ Indirect Addressing Designator

u (16bits) — Base Operand Address

* Instruction determines usage.

Figure 3-6. Basic Instruction Word.

Operation Code, f (6-Bits)

The operation code or f designator, composed of
the leftmost six bit positions in the instruction
word, stipulates the particular operation that is to
be performed. (In certain instructions, when the
normal meaning of the j designator is not ap-
plicable, the operation code may be expanded to
include the ten leftmost bits in the instruction
word.)Invalid f (or f and j) values are fault condi-
tions which cause an error interrupt to occur, In
this event, the main program jumps to a fixed
memory address containing the entrance to an ap-
propriate error subroutine.

Operand Interpretation, j (4-Bits)

Normally, the j designator determines whether an
entire data word or only a part of it is to be trans-
ferred to or from the arithmetic section. As pre-
viously mentioned, in certain instructions j serves
as a minor operation code rather than as a partial
word determinant.

In the case of partial transfers, j stipulates which
portion of a word (half, third or sixth) is to be trans-
ferred. Figure 3-7 shows the j values and corre-
sponding word portion transfers to the X-register.

When j equals 16 or 17 (octal), the effective oper-
and is taken directly from the instruction word,
itself, instead of calling for an operand from mem-
ory.

In data transfers to the arithmetic section, when
j equals 3 through 7 or 17, the sign of the operand,
which is the MSB of the partial word, is extended
to the high-order positions in the arithmetic sec-
tion, Figure 3-7 shows that thirds are always ex-
tended, sixths are never extended, and extension
is optional with half words. Figure 3-8 shows the
j values and word portion transfers from the X-
register to the core memory input-output registers
Z, and Z,. A j of 16 or 17 (octal) inhibits the
data transfer.

A-Register Designator, a (4-Bits)

The type of instruction that is to be executed de-
termines the specific usage of the 4-bit a designa-
tor.

In arithmetic instructions, a specifies one of six-
teen arithmetic registers. In a few instructions,
such as Block Transfer; Load Ba Modifier Only;
and Test Modifier, the a designator specifies one
of sixteen index registers. Input-output instruc-
tions, on the other hand, use a to stipulate which
communications channel and access control word
is to be used. In some instructions, the a designa-
tor specifies an R-register, using the notation R,.
In the Index Jump instruction, a and j combine to
specify any desired control-memory location.

B-Register Designator, b (4-Bits)

The 4-bit b designator determines which of the
fifteen index registers, if any, is to modify the
instruction’s operand address. When b equals 0,
address modification is inhibited. (Index register
0 can only be addressed by the a designator.)

35 oo| z 05 00|z
i=o0 @ 10

35 oo| x 05 oofx
17 00|z 11 06 z

(38) 11 Q
17 00| x 05 oo|x
35 18 00|z 17 12 z
17 0o|x 05 00]x
| 17 00| z |23 18] z

3 (i) 13 \@\
[35 sion ExT. 18|17 00| x 05 00|x
35 18] z I 29 2] , |z

¢ *
35 SIGN EXT. 18[17 00| x 05 00fX
11 00|z 35 30 V4

> ' \®\
35 SIGN EXT. 12|11 00|x 05 00|X
23 12 7 17 oofu

6 16 (1)
35 SIGN EXT. 12|11 oo x 17 0o|x
35 24 z 17 oolu
7 17 @

35 SIGN EXT. 12|11 T oolx [35 sieN ExT. 18[17 0o x

Finura w7 Data Pnathe ta Arithmetie Sactian.

35 00| z 11 06 z
i=o0 @ 11
[35 00| x [[os 00 x
17 00|z 17 12 z
lor3 (18) 12
35 18|17 oo x 35 o605 oo x
35 . 18 z 23 18 z
20r4 (1s) 13 6
35 18[17 oo| x 35 o605 o0o]x
| [11 00|z 2o 24 z
5 14
35 12|11 oo]x 35 o6[os oo} x
23 12| |z 35 .3o| |z
6 15
35 12|11 oo| x 35 06/05 00| x
[35 24 |z |]z
7 16 or 17 NO TRANSFER
35 12|11 oo x X
| |05 00 z
10
35 06|05 00| x

Figure 3-8. Data Paths from Arithmetic Section.

Incrementation Designator, h (1-Bit)

The h designator specifies incrementation of the
modifier stipulated in the b portion of the instruc-
tion word. When h equals 0, the modifier remains
unchanged. When A equals 1, the increment portion
of the index register word (Figure 3-2) is applied
to the modifier portion, thereby altering the sub-
sequent address modification,

Indirect Addressing Designator, i (1-Bit)

The i designator specifies either direct or indirect
addressing of the operand. Indirect addressing
means that the address of the operand rather than
the operand itself is contained in the location
specified by the u designator. Thus, u contains
the address of an address instead of the address
of an operand.

When i equals 0, direct addressing applies; when 1
equals 1, indirect addressing applies. In the latter
case, the rightmost 22-bits contained in the loca-
tion specified by the u designator replace the right-
most 22-bits in the current instruction. Because
the b, h, i, and u designators are involved in this
substitution, all indexing, incrementing, and in-
direct addressing operations can be cascaded.

Base Operand Address, v (16-Bits)

The u designator specifies the base operand ad-
dress, that is one of the storage locations in
memory. The base operand address u becomes U
(the effective operand address) after specified
indexing or indirect addressing operations have
been performed.

Most instructions reference an operand in memory,
except when j equals 16 or 17 (octal). In this case,
the actual operand itself is taken directly from the
u portion of the instruction.

The u designator can also be used to provide the
shift count or to specify core-memory sections in-
volved in a memory lockout.

TWO-ADDRESS ACCESSIBILITY

The index, A, and R-registers can be accessed in
one of two ways. First, the film-memory address
associated with any one of these registers can be
accessed in the same way any film-memory ad-
dress is referenced; that is, by specifying the
address in an instruction’s u designator. Second,
A, B, and R-registers can be accessed via the a
designator. In this case, the type of instruction to
be executed determines which of the three groups
of registers is pertinent to the operation. The
value of the a designator specifies a particular
register within a group.

Any one of 16 arithmetic registers or 16 R-regis-
ters may be referenced by placing the appropriate
value, ranging between 0 and 15, in the a designa-
tor. In respect to specially assigned R-registers,
the a values are as follows:

VALUE REFERENCE
0 real-time clock
1 repeat count register
2 M-register
3 T-register

Sixteen index registers may be accessed via the a
designator. Here again, the a values range between
0 and 15. However, the index register accessed
via an a value of 0 cannot be referenced by the b
designator. Accordingly, index register 0 is em-
ployed only in certain instructions; for example,
Block Transfer; Load Ba Modifier Only; and
Test Modifier . As previously stated, a u designa-
tor containing a value of 0 will inhibit address
modification.

Solid-state circuitry within the Central Computer
provides the data paths for all internal transfers.
The specific circuits over which data moves depend
primarily upon the interpretation of the various
designators within the instruction word. (The role
of skip and jump instructions in determining data
paths is discussed in Chapters 9 and 10.)

EXECUTION CYCLE

To illustrate the functions of the various instruc-
tion word designators, assume an arithmetic in-
struction, stored at the address contained in P, is
to be executed. Assume further that instructions
are stored in one bank and data in the other; the j
designator value is not equal to 16 or 17; and the
b designator is not equal to 0. Once the arithmetic
instruction has been read into PCR, the following
events take place:

1. The {, j, and a designators are interpreted and
the appropriate circuitry is alerted.

2. The lower half of the instruction (A, j, and u
designators) is transferred from PCR to the
indexing unit.

3. The b designator is tested to determine which
index register, if any, is to participate in ad-
dress modification.

4. If modification is stipulated (the contents of b
are unequal to 0), the lower-half of the con-
tents of the specified index register is trans-
ferred to the adder in the indexing unit.

5. The contents of the u designator, with two 0’s
placed to the immediate left, are transferred to
the adder where modification takes place as 18-
bit one’s complement addition.

4,

10.

11.

12,

13.

INTERNAL DATA PATHS

Concurrently, the results of the previous instruc-
tion involved in arithmetic operations are
transferred from a temporary storage register
within the arithmetic section to the A-register
specified in that same instruction.

After modification (step 5), the two leftmost
bits are dropped and the address is transferred
from the adder to SCC where it is decoded for
subsequent referencing to memory.

When modification is specified, the h designa-
tor in the current instruction is tested to deter-
mine whether the index register modifier (Q) is
to be incremented (or decremented) by (A). If
h equals 1, the increment is applied to the
modifier.

After incrementation, the new modifier is sent
into the lower half of the index register speci-
fied by the b designator. The increment portion
remains unchanged.

The operand address is transferred from SCC
(step 7) to the appropriate storage address
register (S0, S1, or S2).

The entire 36-bitcontents of the location speci-
fied in the storage address register are trans-
ferred into the appropriate memory unit’s Z-
register.

The i designator is tested to determine whether
direct or indirect addressing is stipulated.

The contents of the A-register specified in the
current instruction are transferred from film
memory to a temporary storage register in the
arithmetic section,

14, The actual data transfer, in accordance with
the j designator interpreted in step 1, is made
from memory (Z0, Z1, or Z2) to the arithmetic
section.*

15. The program address register, P, is increment-

ed by 1 to provide for the sequential execution

of instructions.

16. The next instruction, stored at the address now

contained in P, is referenced in memory.

* The j designator is ineffective when the operand is read
from film memory (Z0). For certain instructions, 18 bits
are transferred to or from a u address specifying film memory.
However, the transfer is made as specified by the h designa-
tor rather than the j.

17. The circuitry alerted by the f designator in

step 1 performs the desired operation.
18. The next instruction, referenced in step 15, is
sent to PCR.
19, An input-output transmission may be performed
while the specified arithmetic operation (step
17) is being completed.

For most instructions, the preceding steps require
4.0 microseconds. Execution time is extended by
4.0 microseconds when the operand reference is
made tothe same bank as the instruction reference.

The block diagram in Figure 4-1 depicts the prin-
cipal paths over which data moves during the exe-
cution cycle.

j ' MEMORY CORE MEMORY .

E Control Memory (Thin-Film) 2us Effective Cycle Time E:’

I - YT BANK2 | &

28 thirty-six bit words —

| : lnsel;yss;;netvilme I [75,192, 16,384 or 32,768 | 8,192,168 or 32,768 | £

o o R L Thirty-six bit words L Thitysibitwoss | ©

L Zo 1 % — 2 T b

} I — RPN R NS WL S K i S S £

; scc

| | [mpEXING b [x-REGISTER

UNIT

ARITHMETIC {

| PROGRAM ARITHMETIC

4 CONTROL —> NETWORK &

] PCR [« CONTROL
ACCESS INPUT-

MAIN CONTROL CONTROL IBR 0BR OUTPUT

CIRCUITS CONTROL

3 PERIPHERAL
4 EQUIPMENT

PERIPHERAL PERIPHERAL
EQUIPMENT | ____. EQUIPMENT
& CONTROL & CONTROL

Figure 4-1. Block Diagram of the UNIVAC 1107
Thin<Film Memory Computer.

4-2

j DESIGNATOR UNEQUAL TO 16 OR 17

When the current instruction’s j designator is
neither 16 nor 17 (octal), one of eleven possible
portions of a word or the entire word may serve as
the operand. The j designator becomes effective
when the operand is being transferred between
core memory (Z1 or Z2) and the arithmetic secfion.
Consequently, with respect to the j designator, a
data transfer to or from film memory (Z0) will
always involve a complete 36-bit word. Figure 4-2
shows the data paths utilized when the j designa-
tor is neither 16 nor 17.

CORE MEMORY

BANK 1 or BANK 2

b ———y

partial word selection as
specified by j
designator

X-REGISTER

ARITHMETIC SECTION

Figure 4-2. Data Paths for j Unequal to 16 or 17

j DESIGNATOR EQUAL TO 16 OR 17

The j designator may also stipulate that the oper-
and is to be transferred from the instruction word
itself. This operation is specified by a-j value of
16 or 17 (octal). Then, depending upon the con-
tents of the b designator, either 16 or 18 bits will
be transferred from low-order positions in the cur-
rent instruction to the arithmetic section.*

When j is 16 and b is not 0 (that is, index register
modification is specified), the 16-bit contents of
the current instruction’s u designator serve as the
operand. In the indexing unit, two binary 0’s are
placed to the immediate left of the 16 bits taken
from the instruction. After the specified modifica-
tion has been performed as 18-bit one’s complement
addition, the 18-bit operand is transferred to the
lower half of the X-register for subsequent trans-
mission to the arithmetic section. The upper half
of this register is cleared to 0’s.

When j is equal to 16 and b is equal to 0 (modifica-
tion is inhibited), an 18-bit operand will be trans-
ferred from the instruction word to the arithmetic
section. The 18 bits are taken from the current
instruction’s A, i, and u designators. Once again,
the upper half of the X-register is cleared to 0’s.

A j value of 17 is executed in a manner similar to
those described, with the exception that the sign
of the operand, as it enters the lower half of the
X-register, is extended to the left. Sign extension,
then, replaces the filling in of 0’s.

Figure 4-3 depicts the data paths used in trans-
ferring operands from an instruction to the arith-
metic section. Once the operand has entered the
arithmetic section, the specified arithmetic oper-
ation is performed. Indirect addressing, if speci-
fied, is performed before transferring the operand
to the arithmetic section.

INDIRECT ADDRESSING

When the current instruction’s i designator is
equal to one, an indirect addressing operation will
be performed. In this case, the rightmost 22 bits
contained in Z1, or Z2, are transferred (step 11 in
the execution cycle) to corresponding positions in
PCR. The execution cycle then reverts to step 2
and remains in this loop until step 13 specifies
direct addressing.

* The j values of 16 and 17 are effective only in transfers
to the arithmetic section. These j values inhibit transfers
from the arithmetic section.

4-3

Modifier portion
of index register
specified by b

18 bits

ARITHMETIC SECTION

X-REGISTER
(36 bits)

PCR
f |jlalb|hji u
R
00 hii u
11 \

0<——0

..

...

Modifier portion
of index register
specified by b

ARITHMETIC SECTION

X-REGISTER
(36 bits)

0+—0

ARITHMETIC SECTION

X-REGISTER
(36 bits)

1
Sign ext

PR R R R R R R I R R R R R R R T T i S AP S

INPUENﬁ'TNG 18-bit adder
PCR
fjijajbihi] v
1 y
010 hii u
L AR 4
INDEXING
UNIT 18-bit adder
PCR
fo[jla|b |hi !
V V V
010 h|i u
18 bits ” L
IN[:J‘F;ITT'NG 18-bit adder
|
PCR
f jlal b (hji u
y Y
010 hii u
Y 1L Y
INDEXING :
URIT 18-bit adder

ARITHMETIC SECTION

X-REGISTER
(36 bits)

Se—I 5§ L
Sign ext

Figure 4-3. Data Paths for a j of 16 or 17.

Figure 4-4 shows the data paths utilized in indirect Because the 22 bits read into PCR include the b,
addressing. Note that the 22 bits cannot be trans- h, and i designators, as well as a new u designa-
ferred from film memory (Z0),since the PCR can tor, indirect addressing can be cascaded.

only be entered from core storage, Z1 or Z2.

CORE MEMORY

Z*y or Z*
] I2I T T S1 01 Sy
22-bits
L1l
/
PCR !
fljlalb|h]i u
SCC

A |

modifier portion of 00 h ! u
index register | |
specified by b, 1 |
leftmost two bit
-bi INDEXING .
18-bits UNIT 18-bit adder positions dropped

*Z may contain an instruction word or a data word.

Figure 4-4. Data Paths for Indirect Addressing

GLOSSARY AND CONVENTIONS

Listed below are the abbreviations and symbols
frequently used in the ensuing chapters.

() — Contents of the register or ad-
dress specified withinthe paren-
theses.

X — The complement of the contents
of the specified register or ad-

dress.

The absolute value of the con-
tents of the specified register
or address.

()] -

Subscript numbers indicate the
range of pertinent bit positions
in the word located at the speci-
fied address.

()35~00 -

()i — The initial contents of the regis-
ter or address specified within

the parentheses.

The final contents of the regis-
ter or address specified within
the parentheses.

()¢ -

The address specified in the
current instruction’s u designa-
tor.

The effective operand address.

One of 16 arithmetic registers
as specified by the a designa-
tor.

A+1 — The arithmetic register located
at the address immediately fol-
lowing the one specified by the
a designator.

One of 15 index registers as
specified by the b designator.

One of 16 index registers as
specified by the a designator,
Ra — One of 16 R-registers as speci-
fied by the a designator.

M — The mask register.

NI — The next sequential instruction.

— — Transfer the word located at the
address shown to the left of the
arrow to the address shown on
the right.

()H)e () — The logical product of the con-
tents of the addresses shown to
the right and left of the symbol.

() ® () — The logical sum of the contents
of the addresses shown to the
right and left of the symbol.

()® () — The logical difference between

the contents of the addresses
shown tothe right and left of the
symbol.

For the purpose of presentation, the internal in-
structions in the UNIVAC 1107 repertoire have
been subdivided into nine groups. Within practical
limits, assignment of an instruction to a particular
group was contingent upon the type of operation
performed by the instruction. A chapter is devoted
to each of these nine groups.

In all instructions, the b, h, and i designators
provide for index register modification, incremen-
tation of the modifier, and indirect addressing. The
a designator normally specifies one of 16 arith-
metic registers (octal addresses 14 through 33).
When the a designator specifies address 33 and a
2-word operand or result is involved, the next
higher arithmetic register (A + 1) is address 34,
an unassigned film-memory location. Note that the
program does not revert back to address 14. In
effect, then, the system has 17, rather than 16,

arithmetic registers.

The values of f and j designators, the examples of
individual instructions, and the memory addresses
cited in the notes that follow many instructions
are presented in the octal numbering system.

The execution time for all instructions is shown
in microseconds.

Partial word transfers that do not involve sign
extension (see Figures 3-7 and 3-8) are used pri-
marily for transferring characters and not arith-
metic quantities. The programmer, however, is not
restricted to this usage.

The numeric representation of the operation code
(f designator) is shown for each instruction.

When used to determine an operand the j designa-
tor may be expressed mnemonically as shown in
the following diagram:

MNEMONICS

Sixths S1 1§ S3 ! S4 S5 | S
Thirds XTq XT2 XT3
Halves Hy I Hy

Whole W

In mnemonic representation, a leading X signifies
sign extension. In transfers to the arithmetic sec-
tion, the leading X is mandatory with thirds and
optional with halves. Sixths are never extended.
In transfers from the arithmetic section, the sign
bit is never extended. In this case, the leading X
is dropped from the mnemonic representation of
thirds. Similarly, it would not be used to express
a half-word transfer,

Thirteen instructions in the UNIVAC 1107 reper-
toire specify internal data transfers. These in-
structions may be further subdivided on the basis
of whether they specify data transfers to film-
memory registers (Load Instructions) or from film-
memory registers (Store Instructions).

Every internal transfer utilizes the arithmetic sec-
tion of the Central Computer. The entrance to the
arithmetic section is made via the X, or exchange,
register. For example, a data transfer from core
memory (Z1 or Z2) to film memory (Z0) is accom-
plished automatically in the following manner:

Core (Z1 or Z2) —»X-register —» Arithmetic

Section —»Film (Z0)

Depending upon the value contained in the j desig-
nator, one of eleven possible portions of a word or
the entire word itself will be transferred in com-
pliance with the instruction.

In the case of a partial transfer, the j designator
becomes effective when the 36-bit word is being
transferred between core memory (Z1 or Z2) and
the X-register. Accordingly, in transfers from film

5. TRANSFER INSTRUCTIONS

memory to core memory, the entire data word will
enter the arithmetic section. However, in transfers
from core memory to film memory, only the selected
portion of the data word enters the arithmetic sec-
tion. The partial word is then shifted to the right,
while binary 0’s are filled in to the left.*

LOAD

Seven instructions specify load operations. Upon
execution of a load instruction, data contained in
either core memory or film memory is transferred to
a register in film memory.

In load instructions, the a designator specifies
the arithmetic register, index register, or R-regis-
ter to which data is to be transferred. The instruc-
tion itself, as evidenced by the operation code (f
designator), determines which of the three types
of registers is pertinent to the operation. The u
designator in load instructions determines the
location from which data will move,

When the u designator specifies film memory (Z0)
and j is unequal to 16 or 17, an entire data word
is transferred.

* The sign of the selected portion of a word is extended to
the left when j equals 3 through 7.

LOAD POSITIVE

OPERATION CODE:
MNEMONIC CODE:
OPERATION:

10
LDP

(U)y—=A

DESCRIPTION: Transfer the j-determined portion
of the contents of U to the specified A-register.

EXAMPLES:

1.
where (A)j =
321044440123

and j=10 THEN

2.
where (A)j =
665032714325

and j=0 THEN

3.
where (A)j =
555544443333

and j=2 THEN

4,
where (A)j =
333322221111

and j=5 THEN

and (U); =
(445566771122

(M=
[445566771122]

e

and (U)j =
[211241145115|

A=y
211241145115|

and (U); =

222266667777

000000222266

and (U)j =

202014145335

(A) = y
7777717717/5335

om———

Sign Extended

NOTES: In example 4, the j value causes the nega-
tive sign of a partial word to be extended in A.

EXECUTION TIMES:

Alternate Banks 4.0
Same Bank 8.0

LOAD NEGATIVE

OPERATION CODE: 11
MNEMONIC CODE: LDN
OPERATION: —(U)—A

DESCRIPTION: Transfer the complement of the j-
determined portion of the contents of U to the
specified A-register.

EXAMPLES:

where (A)j =
555533332222

and (U); =
111100006666

and j=0 THEN (A=
|666677771111]

2.

where (A); = and (U); =

312450026177 [253143273524]

and j=10 THEN (A) = \
1524634504253]

3.

where (A); =

666644445555

and j=3 THEN

4.
where (A)j = and (U); =
123432101234 30045005(6006

and j=6 THEN (A =

000000002772

NOTES: Regardless of the j value, positive quan-
tities in U will be stored negative in A. How-
ever, when j equals 0 or 3 through 7, negative
quantities in U will be stored positive in A.

The j factor becomes effective prior to com-

plementation in the arithmetic section.
EXECUTION TIMES: Alternate Banks 4.0
Same Bank 8.0

LOAD POSITIVE MAGNITUDE

OPERATION CODE: 12
MNEMONIC CODE:
OPERATION: |[(U)|—>A

DESCRIPTION: Transfer the absolute value of the
j-determined portion of the contents of U to the
specified A-register.

LDM

LOAD NEGATIVE MAGNITUDE

OPERATION CODE: 13
MNEMONIC CODE: LNM
OPERATION: —| () |—-A

DESCRIPTION: Transfer the complement of the
absolute value of the j-determined portion of
the contents of U to the specified A-register,

EXAMPLES:

1.

where (A)j =
6666666666606

and j=0 THEN

2.
where (A)j =
2222333344414

and (U); =
[246013573210]

A=y
[246013573210]

and (U)j =
[436116527711]

EXAMPLES:

1.
where (A); =

333344445555

and j=10 THEN

2.
where (A)j =
333344445555

and (U)I =
666611112222]

(A)f =
[666611112222]

and (U)j =
[211216617700]

and j=0 THEN (A = |
(34166125006 6]

3.

where (A); = and (U); =

333344445555 555522223660

and j=5 THEN (A) = ¥
00000000[3660]
extend sign & complement

4.

where (A)j = and (U); =

666666666666 3201/5555/1414

and j=6 THEN (R)f =

000000002222

extend sign & complement

NOTES: After the transfer or partial transfer of the
absolute value of (U);, the 36-bit word con-
tained in the arithmetic section is complement-
ed if bit position 35 contains a binary 1.

Alternate Bank 4.0
Same Bank 8.0

EXECUTION TIMES:

and j=0 THEN (A} = |
(566561160077|

3.

where (A)j = and (U); =

333344445555 (111122503344

and j =4 THEN (A) =
777777666655]

4.

where (A); = and (U); =

333344445555 002233[11/4477
(A) =

and j=12 THEN 0000000000[66]

NOTES: When the j-determined portion of U con-
tains a negative quantity, two complementing
operations occur. The first provides the abso-
lute value, while the second provides the com-
plement of the absolute value. For practical
purposes, note that negative quantities in the
arithmetic section are transferred negative to A.

Alternate Banks 4.0
Same Bank 8.0

EXECUTION TIMES:

LOAD R,

OPERATION CODE: 23
MNEMONIC CODE:
OPERATION:

DESCRIPTION: Transfer the j-determined portion
of the contents of U to the specified R-register.

LDR
(U)—R,

EXAMPLES:

1.
where (Ry)j =
123443211234

and (U); =
1556611007755]

and j=0 THEN Ry = |
1556611007755

2.

where (Ry); = and (U); =

222233334444 41145115(6116

and j=5 THEN (Ry)f = I}
7771777177[6116

3.

where (Ry)j = and (U); =

222233334444 411451156116

and j=11 THEN (Rp)f =

000000000061

NOTES: In this instruction, the a designator speci-
fies one of sixteen R-registers (addresses 100
through 117).

This instruction is executed inthe same manner
as a Load Positive instruction.

The real-time clock may be set and the repeat

count and mask registers may be loaded via

this instruction.
EXECUTION TIMES: Alternate Banks 4.0
Same Bank 8.0

LOAD B,

OPERATION CODE: 27
MNEMONIC CODE: LDB
OPERATION: (U)—B,

DESCRIPTION: Transfer the j-determined portion
of the contents of U to the specified B-register.

EXAMPLES:
1.

where (Bp); =
333344442222

and (U); =
555500001 111]

and j =0 THEN By = |
1555500001111]

2.

where (B,); = and (U)j =

656531312727 [444422]225555

and j=2 THEN (Ba)f =
000000{444422

3.

where (By); = and (U); =

943265437654 60605151/4242

and j=6 THEN (Ba)f =

11771171717

5151]

NOTES: a) The a designator in this instruction
specifies one of sixteen index regis-
ters (addresses 0 through 17).

b) This instruction is executed in a
manner similar to that of the Load
Positive instruction.

c) The index register into which the
value is loaded by the instruction is
specified by the a designator. With a
2-bank care system, the read b oper-
ation in the next instruction is (in
most instructions) performed before
the old ‘‘a’’ has been written. There-
fore, the programmer should consider

the possibility that the value loaded
into an index register by an LDB in-
struction may not be available for
modification purposes for the next
instruction.

Alternate Banks 4.0
Same Bank 8.0

EXECUTION TIMES:

LOAD B, MODIFIER ONLY

OPERATION CODE: 26
MNEMONIC CODE:
OPERATION:

LBM
(UB, 17 _00

DESCRIPTION: Transfer the j-determined portion
of the contents of U to the lower half of the
specified B-register.

EXAMPLES:

1.
where (Bg)j =
300311223344

and (U)j =
1222244446666]

and j=0 THEN

(Ba)k =

300311/446666

2.
where(Ba)i=
441132566543

and j=6 THEN

Extend Sign
3.
where (By)j = and (U)j =

777766665555 3333122224444

and j=17 THEN 777766/003333

4,

where (By)j = and (U); =

454532321010 333311442255
(Ba) =

and j=10 THEN 454532000055

NOTES: In this instruction, the a designator speci-
fies one of sixteen index registers (addresses
0 through 17). The upper half or increment por-
tion of the specified index register always re-
mains unchanged.

Circuitry alerted by the f designator (operation
code 26), rather than by the j designator causes
only the low-order 18 bits to be transferred from
the arithmetic section to the specified index
register. In cases where j designates sign
extension, it should be noted that the sign is
not extended beyond bit position 17. Note c)
of the preceding instruction also applies for
this instruction,

EXECUTION TIMES: Alternate Banks 4.0

Same Bank 8.0

STORE

Six transfer instructions specify store operations.
Five of these instructions entail data transfers
from a film-memory register to either another film-
memory location or to a core-storage"location. The
Store Zero instruction, on the other hand, calls
for a transfer of binary 0’s from the arithmetic
section of the Central Computer to the specified
location in film or core memory.

The a designator in store instructions specifies
the arithmetic register, index register, or R-regis-
ter from which data will move. The u designator
determines the address to which the data will be
transferred.

Whenever j equals 16 or 17 (octal) the write por-
tion of the store operation is inhibited. In this
case, operations stipulated by the instruction’s
b, h, and i designators will be performed. How-
ever, the actual transfer of data to the U address
will not take place,

In the execution of a store instruction, the entire
data word is first transferred from the specified
arithmetic register in film memory to the arith-
metic section (X-register). Low-order bits are then
transferred from the X-register to those bit posi-
tions in memory (Z0, Z1, or Z2) specified by the j
designator. Note that in the case of a partial trans-
fer, the bits are always taken from the low-order
positions in the X-register (Figure 3-8). When U
specifies film memory (Z0), an entire word will be
transferred.

Only the positions to which the selected bits will
be transferred are affected. All other bit positions
in the word located at the U address remain un-
changed.

STORE POSITIVE

OPERATION CODE: 01
MNEMONIC CODE: STP
OPERATION: (A)=—=U

DESCRIPTION: Transfer the contents of the speci-
fied A-register to the j-determined positions in U.

EXAMPLES:

1.

where (U)j = and (A); =

500560067007 [345644446543]

and j=0 THEN (U)= §
(345644446543

2.

where (U); = and (A); =

222233334444 [656543432121]

and j =0 THEN U=
WSBSHHZIZH

3.

where (U); =

001113570246

and j=2or 4 THEN

NOTES: When j is equal to zero a negative value
in A will be stored negative in U.

EXECUTION TIMES: Alternate Banks 4.0

Same Bank 8.0

5-6

STORE NEGATIVE

OPERATION CODE: 02
MNEMONIC CODE: STN
OPERATION: -~ (A)=—U

DESCRIPTION: Transfer the complement of the
contents of the specified A-register to the j-
determined positions in U.

EXAMPLES:

1.
where (U); =
212135357171

and (A); =
123456701234

and j =0 THEN (U= ¢
654321076543

2.

where (U)j = and (A); =

212135357171 [65432107654 3]

and j=0 THEN (U=
[123456701234]

3.

where (U); = and (A); =

000011112222

and j=17 THEN

11112222

NOTES: The entire 36-bit word contained in 4 is
complemented before the j factor becomes ef-
fective.

When j equals 0, negative values in A will be
stored positive in U; positive values in A will
be stored negative in U.
EXECUTION TIMES: Alternate Banks 4.0
Same Bank 8.0

STORE MAGNITUDE

OPERATION CODE:
MNEMONIC CODE:
OPERATION:

03
STM

[(A) |[—U

DESCRIPTION: Transfer the absolute value of the
contents of the specified A-register to the Jj-
determined positions in U.

EXAMPLES:

1.
where(U)i=
6767545243232

and j=10 THEN

2.
where (U); =

3456654323145

and j=0 THEN

3.
where (U); =
555566661111

and j=6 THEN

and (A); =
313120204545]|

(U) = Y
313120204545]

and (A); =
550033002121]

(U) = 7
227744775656]

and (A); =
432076514

(U) =
5595

NOTES: The 36-bit value in A is complemented
whenever bit position 35 contains a binary 1.
Complementation occurs before the j value

becomes effective.

EXECUTION TIMES:

STORE R,

OPERATION CODE:
MNEMONIC CODE:
OPERATION:

Alternate Banks 4.0
Same Bank 8.0

04
STR
(Ra)—-)U

DESCRIPTION: Transfer the contents of the speci-
fied R-register to the j-determined positions in
U.

EXAMPLES:

1.
where (U); = and (R,); =
222266667777 [411455553223 |

and j=0 THEN Uy = |
411455553223

2.

where (U); = and (Ry); =

577560061111 [234554322345]|

and j=0 THEN (U= |
1234554322345]

3.

where (U); = and (Ry,); =

222266667777 555511/113333

and j=1o0r3 THEN V) = Y

222266113333

NOTES: In this instruction, the a designator speci-
fies one of sixteen R-registers (addresses 100
through 117). This instruction is executed in a
manner similar to that of the Store Positive
instruction.

This instruction can be used to read the real-
time clock and repeat counter.

EXECUTION TIMES: Alternate Banks 4.0

Same Bank 8.0

STORE ZERO

OPERATION CODE: 05
MNEMONIC CODE: STZ
OPERATION: O —1U

DESCRIPTION: Transfer 0’s to the j-determined
portion in U.

5-7

EXAMPLES: 2.
1 where (U); = and (By)j =
Where (U), = 345665433456 and =0 111133335555 22224444[6666
dj=6 THEN (U) =
THEN (U)=[000000000000 an
(U)=| 1111[6666/5555
2.
where (U)j= 765432111234 andj=5 :
THEN(U)f = 765432110000 where (U); = and (By)j =

NOTES: The a designator in this instruction is
ignored. When U specifies film-memory and j is

667755443322

5432765432(10

I to 16 or 17, the entire 36-bit word witl 10)~ 1 THEN — (U) >
unequa o or N e entire =-D1t word wi _
be cleared to 0’s. 7755443322
EXECUTION TIMES: Alternate Banks 4.0
Same Bank 8.0 '
STORE B, where (U); = and (B,); =
5 666 3 77
OPERATION CODE: 06 55544446 333000077
MNEMONIC CODE: STB and j=160r17 THEN (V) =
555544446666
OPERATION: (By) U

DESCRIPTION: Transfer the contents of the speci-

fied B-register to the j-determined positions in U.

NOTES: The a designator in this instruction stipu-

EXAMPLES: lates one of sixteen index registers in film
1. memory (decimal addresses 0 through 15).
where (U); = and (By); = When j equals 16 or 17, the transfer is inhibit-

204533335005

and j=0 THEN

432412344321]

(U = y

ed (example 4).

EXECUTION TIMES: Alternate Banks 4.0

432412344321 Same Bank 8.0

6. ARITHMETIC INSTRUCTIONS

Eighteen instructions in the UNIVAC 1107 reper-
toire perform arithmetic operations. Included in
this category are the basic add, subtract, multiply,
and divide instructions. Special add and subtract
instructions which operate in parallel upon two or
three fields within a single operand are also in-
cluded in this group.

ADDITION

Four arithmetic instructions specify basic add
operations. Upon execution of an Add instruction,
the contents of a memory location (U) are added to
the contents of either an index register or an arith-
metic register. Then, depending upon the particular
type of Add instruction being executed, the result
is returned to either the same index register, the
same arithmetic register, or the next higher arith-
metic register.

The addition (performed as a 1’s complement
subtractive addition) takes place in the arithmetic
section of the Central Computer.

In an Add instruction, the a designator specifies
one of sixteen arithmetic registers or one of six-
teen index registers. As previously mentioned, the
index register at location 0 cannot be referenced
via the b designator.

The j designator in an Add instruction controls
partial transfers from core memory (Z1 or Z2) to
the arithmetic section. Partial transfers in con-
junction with Add instructions are similar to those
used with Load instructions in that whenever U
specifies film memory and j is unequal to 16 or 17
(octal), an entire word will be transferred to the
arithmetic section.

ADD

OPERATION CODE:
MNEMONIC CODE:
OPERATION:

14
ADD
(A) + (U) —=A

DESCRIPTION: Add the j-determined portion of
the contents of U to the contents of the speci-
fied A-register. Store the result in the specified

A-register.
EXAMPLES:
1.
where (A)j= [000003264115]

i
and (U); = [000000412310] and j=0
THEN(A)y = 000003676425
2.
where (A), = [000000341221]

N\

+
and (U)j= 777777524573 andj=3
THEN(A¥ = 000000066015
3.
where (A); = (000000003501 |

+
and (U)j = 777777774115/ andj=5
THEN(A) = 777777777616
4.
where (A); = [345676543210]

|
and (U)j= 000034431111 andj=6
THEN (A)= 345676546653

EXECUTION TIMES: Alternate Banks 4.0

Same Bank 8.0

ADD MAGNITUDE

OPERATION CODE:
FUNCTION CODE:
OPERATION:

16
ADM
A) + [(U)|—=A

DESCRIPTION: Add the absolute value of the j-
determined portion of the contents of U to the
contents of the specified A-register. Store the
result in the specified A-register.

EXAMPLES:
1.
where (A)j = [000023456701]
i
and (U); = [000015512442] andj=0
THEN(A)y = 000041171343
2.
where (A); = [000000335555]
+
and (U)j= [777777444444] andj=0
THEN(A)y = 000000671110
3.
where (A); = [000025243333
\+
and (U)j= 000000/164507 andj=3
THEN(A) = 000025430042
4.
where (A); = | 344351156776
|
+
and (U);j = 1122064534444 andj=6
THEN(A)y = 344351160322

NOTES: The partial word is formed in the arith-
metic section before bit position 35 is tested.
Then, if position 35 contains a binary 1, the
partial word with sign extended is complement-
ed to produce the absolute value.

EXECUTION TIMES: Alternate Banks 4.0

Same Bank 8.0

ADD AND LOAD

OPERATION CODE:
MNEMONIC CODE:
OPERATION:

DESCRIPTION: Add the j-determined portion of
the contents of U to the contents of the speci-
fied A-register. Store the result in the next
higher A-register.

20
ADL
A)+@U)y—A +1

EXAMPLES:
.
where (A); =[000026653211]|
+
and (U)j =000000327654] and j=3

THEN(A+1)y=000027203065

I

2.
where (A); =[000003456543]

+
and (U); = 77777777]5112] and j=5
THEN(A+1) = 000003453656
3.
where (A); =1[000034566543]

T
and (U); = 246653101357 andj=6
THEN(A+1); = 0000345640514

EXECUTION TIMES: Alternate Banks 4.0

Same Bank 8.0
ADD TO B,
OPERATION CODE: 24
MNEMONIC CODE: ADB

OPERATION: (Ba) + (U)=B,

DESCRIPTION:Add the j-determined portion of the
contents of U to the contents of the specified
B-register. Store the result in the specified B-
register.

EXAMPLES:

1.
where (Bg)i= 0000010344434|
T
+
and (U), = [000001045555] andj=0
THEN (B,);= 000002102221
2

i

where (B,)j= (000005021357

~

+.
and (U), 777777772113] andj=1

THEN(B,); = 000006013472
3.
where (B,), = 000010054332]

:
and (U); = [000101000000] andj=0
THEN(B = 000111054332

NOTES:The a designator inthis instruction speci-
fies one of sixteen index registers (addresses 0
through 17.)

Because the 36-bit index register word contains
two distinct values (the modifier and the incre-
ment), the programmer must be certain a carry
is not inadvertently made into the sign posi-
tions of the Q and A portions.
EXECUTION TIMES: Alternate Banks 4.0
Same Bank 8.0

SUBTRACTION

Four arithmetic instructions specify subtraction.
Upon execution, the contents of a memory location
(U) are subtracted from the contents of either an
index register or an arithmetic register. As deter-
mined by the operation code, the result will be
stored in the same index register, the same arith-

metic register, orthe next higher arithmetic register.

The designators in Subtract instructions are used
in the same manner as those in the Add instruc-
tions.

SUBTRACT

OPERATION CODE: 15
MNEMONIC CODE: SUB
OPERATION: (A)=(U) = A

DESCRIPTION: Subtract the j-determined portion
of the contents of U from the contents of the
specified A-register. Store the result in the
specified A-register.

EXAMPLES:
1.
where (A), = [000000341233]
|

and (U); = [000000156444] andj=0
THEN(A) = 000000162567
2.
where (A); = [000000435555]
and (U); = [777777773333] andj=0
THEN(A) = 000000442221
3.
where (A); = |000000442222

-~
and (U)j = [333355/556666 and j=4
THEN(AY = 000000106645
4.
where (A), = [000000334567
and (U, = 777766665555 andj=6
THEN(A)y = 000000335700

Alternate Banks 4.0
Same Bank 8.0

EXECUTION TIMES:

SUBTRACT MAGNITUDE

OPERATION CODE:
MNEMONIC CODE: SBM
OPERATION: (A)=|(U) | A

DESCRIPTION: Subtract the absolute value of the
j-determined portion of the contents of U from
the contents of the specified A-register. Store
the result in the specified A-register.

17

EXAMPLES:
L
where (A), =-[000000554444]

]
and (U)j = [000000036666] and =0
THEN(A) = 000000515556
2.
where (A); = [000044445555]
and (U)j = 777773336666 and j=3
THEN(A)f = 000044106667
3.
where (A); = [000066662222]

™~

~
and (U)j = 00000000[7444]| and j=5
THEN(A) = 000066661667

NOTES: The partial word is formed in the arith-
metic section before bit position 35 is tested.
Then, if position 35 contains a binary 1, the
partial word with sign extended is complement-
ed to produce the absolute value.

EXECUTION TIMES: Alternate Banks 4.0

Same Bank 8.0
SUBTRACT AND LOAD
OPERATION CODE: 21
MNEMONIC CODE:; SBL
OPERATION: (A) — (U)=»A +1

DESCRIPTION: Subtract the j-determined portion
of the contents of U from the contents of the
specified A-register. Store the result in the
next higher A-register,

EXAMPLES:
1.

where (A); =|000000|3324z4l

and (U); =[000000145670]andj=0

THEN(A+1)= 000000164534

2

where (A)] =|777777754646 |
\—
and (A)y = 777777772112 and j=5
THEN(A+1)= 777777752534
3.
where (A); =|000045543223 |
I
and (U); = 7777|76664444 andj=6

THEN(A+1x= 000045543334

EXECUTION TIMES: Alternate Banks 4.0

Same Bank 8.0

SUBTRACT FROM B,

OPERATION CODE:
MNEMONIC CODE:
OPERATION:

DESCRIPTION: Subtract the j-determined portion
of the contents of U from the specified B-regis-
ter. Store the result in the specified B-register.

25
SBB
(Ba) — (U)=>B,

EXAMPLES:

L.
where (B,); =/000004034651]
!

~[000000002116] andj=0

and (U)l

THEN (Bg)f = 000004032533

2.
where (B,); =|000031020065]
T

and (U); =/000012000000] andj=0

THEN(Ba) = 000017020065

NOTES: The a designator in this instruction is
used to specify one of sixteen index registers
(addresses 0 through 17).

In using this instruction, the programmer should
exercise care that a carty or borrow is not in-
advertently made from the increment portion
(A) of the index register word to the modifier

portion (Q).

EXECUTION TIMES: Alternate Banks 4.0

Same Bank 8.0

MULTIPLICATION

Three instructions perform multiplication. In these
instructions, the a designator always specifies an
arithmetic register. The remaining designators
serve the same purpose as those used in Add
instructions.

Multiplication produces a 72-bit (2-word) result.

The most significant word is stored in the speci-
fied arithmetic register, while the least significant
word is stored in the next higher arithmetic regis-
ter. Bit position 35in the specified A-register con-
tains the sign of the 72-bit result. All 36 bit
positions in A + I contain data.

MULTIPLY INTEGER

OPERATION CODE:
MNEMONIC CODE:
OPERATION:

30
MPI
(A) - (U)=>A,A+1

DESCRIPTION: Multiply the contents of the speci-
fied A-register by the j-determined portion of
the contents of U. Store the most significant
half of the 72-bit result in the specified A-
register and the least significant half in the
next higher A-register.

6-6

EXAMPLES:

1.
where (A); =(€oooog0001zﬁ
and (U)j =[000000000002| andj=0
THEN(AY = 000000000000
AND(A+1) = 000000000244
2.
where (A)] =[312000000000]
~.
and (U); = 002000004444 andj=4
THEN(A) = 000000000624
AND(A+1) = 000000000000
3.
where (A)] = [214000000000]
T

and (U)j = 7777[3000/5555 andj=6
THEN(AY = 000000000644

AND (A+1) = 000000000000
4.
where (A); = [312000000000]

and (U)j =[777777175777] and j=0
THEN(AY = 311777777153
AND(A+1)f = 466000000000

EXECUTION TIMES: Alternate Banks 12.0

Same Bank 16.0

MULTIPLY SINGLE (INTEGER)

OPERATION CODE:
MNEMONIC CODE:
OPERATION:

31
MPS
(A) - (U)=>A

DESCRIPTION: Multiply the contents of the speci-
fied A-register by the j-determined portion of
the contents of U. Store the result in the speci-
fied A-register.

EXAMPLES:
1.
where (A); =[000000000122

and (U), =[000000000002] andj=0
THEN(A = 000000000244
2.
where (A); =1312000000000

7

and (U); =[002000/004444 andj=4

THEN(AY = 000000000000

NOTES: Basically, this instruction specifies a
Multiply Integer operation. However, the least
significant half of the 72-bit result (rather than
the most significant half) is stored in the speci-
fied A-register. The 36 most significant bits
are lost, while the contents of the next higher
A-register (A 4 1) remain unchanged.

EXECUTION TIMES: Alternate Banks 12.0

Same Bank 16.0

MULTIPLY FRACTIONAL

OPERATION CODE:
MNEMONIC CODE:
OPERATION:

32
MPF
A-@U»A, A+1

DESCRIPTION: Multiply the contents of the speci-
fied A-register by the j-determined portion of
the contents of U. Store the most significant
half of the fractional result in the specified
A-register and the least significant half in the
next high A-register.

EXAMPLES:
L
where (A); = (000000000122

and (U); = [000000000002] andj=0
THEN(A} = 000000000000

AND (A+1) = 000000000510

2

where (A); =Q12000£00000!

and (U); = 002000004444 and j=4
THEN (A) = 000000001450
AND(A+1)f= 000000000000

3.

where (A)j =]214000.000000T

and (U); = 777730005555 andj=6
THEN(A)f = 000000001510
AND(A+1) = 000000000000

4,

where (A); = [312000000000]

and (U = (777777775777 and j=0
THEN (A) = 177171717171763217
AND(A+1)= 000000000000

NOTES: This instruction is identical to Multiply
Integer with the exception that the 72-bit result
is shifted one place to the left before it is
stored in the two A-registers.

As may be seen from a comparison of examples,
the left shift in Multiply Fractional doubles the
result of a Multiply Integer instruction.

EXECUTION TIMES: Alternate Banks 12.0

Same Bank 16.0

DIVISION

Three arithmetic instructions stipulate division.
In these instructions, the a designator always
specifies an arithmetic register. The remaining
designators are used in the same manner as with
Add instructions.

The Divide Integer and the Divide Fractional in-
structions are normally used when the program
specifies immediate division of the double-length
product of a Multiply Integer or Multiply Fractional
instruction.

During the execution of a Divide, overflow will
occur whenever the divisor is equal to or less than
the most significant half of the dividend. This
condition, in turn, causes an error interrupt.

DIVIDE INTEGER

OPERATION CODE: 34
MNEMONIC CODE: DVI
OPERATION: A, A+1) <= (U)»A,A+1

DESCRIPTION: Divide the 72-bit combined con-
tents of the specified A-register and the next
higher A-register by the j-determined portion of
the contents of U. Store the quotient in the
specified A-register and the remainder in the
next higher A-register.

EXAMPLES:

1.
where the Dividend (A,A+1)j =
[000000000000000000010000]

and the Divisor (U)j = [000000002000] andj =0

Then the Quotient(A}= 000000000004

and the Remainder = 000000000000
A+

2.
where the Dividend (A,A+1); =

QOUUOOOOOOUOUOUOOOOOOOZﬂ
~. —

000000000005 and j=3

000000000003
000000000003

and the Divisor (U);

then the Quotient (A)

and the Remainder
A+ Df

3.
where the Dividend (A,A+1)j =

Moouooooouooiooouooooozﬂ

and the Divisor (U); = 777777777772]andj=3

Then the Quotient(Ax= 777777777774

and the Remainder = 000000000003
(A+ D)f

NOTES: Because the double-length dividend is,
in effect, a single 72-bit word, the divisor need
only be greater than the most significant half,
that is, greater than the contents of A.

The remainder has the same sign as the divi-

dend.
EXECUTION TIMES: 31.3
35.3

Alternate Banks
Same Bank

DIVIDE SINGLE AND LOAD (FRACTIONAL)

35
DVL
(A) = (U)—=A +1

OPERATION CODE:
MNEMONIC CODE:
OPERATION:

DESCRIPTION: Divide the contents of the speci-
fied A-register by the j-determined portion of
the contents of U. Store the result in the next
higher A-register.

EXAMPLES:

1.

where the Dividend (A); =
[000000000035]

and the Divisor (U)j =
[000000000006]

THEN the Quotient (A + 1) =
000000000004

and j=10

2.
where the Dividend (A); =
[000000000030]
N\

and the Divisor (U)j =
77777777[7772] andj=5
THEN the Quotient (A + 1) =
771717717171711713

NOTES: This instruction is similar to the Divide
Fractional (operation code 36) except that only
the most significant half of the dividend is
used,

A remainder is not provided for by this instruc-
tion.
EXECUTION TIMES: Alternate Banks 31.3
Same Bank 35.3

DIVIDE FRACTIONAL

OPERATION CODE:
MNEMONIC CODE:
OPERATION:

36

DVF

(ALA+1) = (U)==A,A+1

DESCRIPTION: Divide the 72-bit contents of the
specified A-register and the nexthigher A-regis-
ter by the j-determined portion of the contents
of U. Store the quotient in the specified A-

register and. the remainder in the next higher
A-register,

EXAMPLES:

1.
where the Dividend (A, A + 1) =

[000000000000000000010000]

and the Divisor (U); = [000000002000] andj=0

Then the Quotient (A= 000000000002

and the Remainder = 000000000000
(A+ D

2.
where the Dividdnd (A, A +1); =

|000000000000Q00000000022[

and the Divisor (U = 000000[000005] and j=3

Then the Quotient (A= 000000000001

and the Remainder = 000000000004
(A+ 1)

3.
where the Dividend (A, A +1); =

IOUOUOU0000000\00000000022]

and the Divisior (U)y =777777\7771772| and j=3

Then the Quotient (A= 7777777771716
and the Remainder 6000000000014
(A+ 1}

NOTES: This instruction is identical to the Divide
Integer with the exception that the 72-bit divi-
dend is effectively shifted right 1-bit place
prior to division. (See the notes on Divide
Integer.)

As may be seen from a comparison of examples,
the right shift in Divide Fractional reduces the
quotient of a Divide Integer by one half.

The right shift counteracts the left shift in-

herent in Multiply Fractional instructions.
EXECUTION TIMES: Alternate Banks 31.3
Same Bank 35.3

MULTIPLE ADD AND SUBTRACT

Four arithmetic instructions specify parallel addi-
tion or subtraction of two or three fields within a
single operand. The operation code (f designator)
is the same for all four instructions. However, with
these instructions, the j designator serves as a
minor operation code, rather than as a partial-word
determinant. The selection of a particular instruc-
tion in this group is contingent upon the value
contained in j.

In these instructions, the a designator always
specifies an arithmetic register.

The addition (or subtraction) of two fields is treat-
ed as two distinct operations. Bit positions 35 and
17 contain the signs of the upper and lower fields
respectively. In the actual computation, carries
(or borrows) are restricted to the half in which
they occur. Since carries (and borrows) are not
made throughout the entire 36-bit word, these
instructions will not set the carry designator or
the overflow designator.

Similarly, the addition (or subtraction) of three
fields is treated as three distinct operations. Bit
positions 35, 23, and 11 are the sign positions.
Here again, the carry and overflow designators
will not be set. Consequently, in all four Multiple
Add and Subtract instructions, the programmer
must take into account the possibility of a carry
(or borrow) inadvertently made into the sign posi-
tion of a particular field.

ADD HALVES

OPERATION CODE: 72

MINOR OPERATION CODE: j=4
MNEMONIC CODE: ADDH
OPERATION: (A)s5_13 +(U)ss_ 15— Az _1g

(A7 -00 +WU)17 - 00=>4A17 _ 0

DESCRIPTION: Add the upper-half of the contents
of U to the upper-half of the contents of the

specified A-register. Store the result in the
upper-half of the specified A-register. Add the
lower-half of the contents of U to the lower-
half of the contents of the specified A-register.
Store the result in the lower-half of the speci-
fied A-register,

EXAMPLES:
1.
where (A), = [001234[0654372]
and (U)j = [000567013333]
THEN(AY = 002023100765
2.
where (A); = [000222[777444]
L
and (U); = [777444005555]
THEN(AY = 777666005222
3.
where (A); = [333333111111]
P
and (U); = [024343[123456]
THEN(A) = 357676234567

EXECUTION TIMES: Alternate Banks 4.0

Same Bank 8.0

SUBTRACT HALVES

OPERATION CODE: 72
MINOR OPERATION CODE: j=5
MNEMONIC CODE:
OPERATION:

SUBH

(A)ss_1g =~ (U)gs 1 g%Ass 1

A)17-00 —Wi17-00*A17-00

DESCRIPTION: Subtract the upper-half of the con-
tents of U from the upper-half of the contents
of the specified A-register. Store the result in
upper-half of the specified A-register. Subtract
the lower-half of the contents of U from the
lower-half of the contents of the specified A-
register. Store the result in the lower-half of
the specified A-register.

EXAMPLES:

ifhem (A = [045555034444]
and (), - (706666005757
THEN(Ay = 036667026465
2.

where (A); = I032‘I222H7761222 |
and (U); = (775333000666]
THEN(AY = 034666775334
3.

where (A), = [000442777646 |
and (U); =|77772221p047555|
THEN(AY = 001217773071

EXECUTION TIMES: Alternate Banks 4.0

Same Bank 8.0
ADD THIRDS
OPERATION CODE: 72
MINOR OPERATION CODE: j=6
MNEMONIC CODE: ADDT
OPERATION: (A)35__24+(U)35_24_>A35_24

A)s—12+ (U) 23~ 129-Ax3 12

(A)11-00+(U) 11-00A11-00

DESCRIPTION: Add the upper third of the con-
tents of U to the upper third of the contents of
the specified A-register and store the result in
the upper third of the specified A-register. Add
the middle third of the contents of U to the
middle third of the contents of the specified A-
register and store the result in the middle third
of the specified A-register. Add the lower third
of the contents of U to the lower third of the
contents of the specified A-register and store
the result in the lower third of the specified
A-register.

6-10

EXAMPLES:

1.

where (A); 044402220666
+ + +

and (U), = (023404560012

THEN(A)y = 070007000700

2.

where (A); = [02340345/0567 |
Lo

and (U); = [0437022300112

THEN(AY = 066605670701

3.

where (A), = [05557444[0333 |
S

and (U), = [7333)0111[7444 |

THEN(AY = 011175550000

EXECUTION TIMES: Alternate Banks 4.0

Same Bank 8.0

SUBTRACT THIRDS

OPERATION CODE: 72

MINOR OPERATION CODE: j=7

MNEMONIC CODE: SUBT

OPERATION: (A)35-24 — (U)35- 24 == Ass_ o4

A)p-12 —(U)3-12=Ap .17

(A)11-00 —(U)11-00=>A11-00

DESCRIPTION: Subtract the upper thiid of the
contents of U from the upper third of the con-
tents of the specified A-register and store the
result in the upper third of the specified A-
register. Subtract the middle third of the con-
tents of U from the middle third of the contents -
of the specified A-register and store the result
in the middle third of the specified A-register.
Subtract the lower third of the contents of U
from the lower third of the specified A-register
and store the result in the lower third of the
specified A-register.

EXAMPLES:

1.
where (A)i

and (U);

THEN (A)

I

1]

1

°3ﬁ4bzﬁﬂm2fl
0&56b{36b0;7

026601070162

2.

where (A); = (045677450034 |
I T T
and (U); = (773475430045
THEN(A)y = 052102027766

EXECUTION TIMES: Alternate Banks 4.0
Same Bank 8.0

6-11

Six instructions in the UNIVAC 1107 repertoire
are classified as logical instructions. Basically,
these instructions entail the addition, subtraction,
or multiplication of specified bit configurations
rather than quantities. Logical instructions differ
from arithmetic instructions in that they perform
these operations in a non-arithmetic manner. In
executing a logical instruction — whether it be
addition, subtraction, or multiplication — the de-
sired operation is performed on a bit-by-bit basis.
The special circuitry that provides for carries
from one bit position to another is not activated as
in the execution of arithmetic instructions.* Con-
sequently, carries do not occur in logical oper-
ations.

* The manipulation of bits on an individual basis conforms
to the logic of basic computer circuitry. Consequently,
instructions that stipulate the handling of data on a bit-by-
bit basis are termed logical instructions.

7. LOGICAL INSTRUCTIONS

In logical instructions, the a designator always
specifies an arithmetic register. When the result
is to be stored in A + I and the instruction’s a
designator specifies address 33 (the sixteenth
A-register), the result will be stored at address 34
(an unassigned film-memory location). The program
will not revert back and store the result at address
14 (the first A-register).

The j designator in logical instructions controls
partial transfers from core memory (Z1 or Z2) to
the arithmetic section. When U specifies film mem-
ory (Z0) and j is unequal to 16 or 17 (octal), an
entire word will be transferred to the arithmetic
section,

SELECTIVE SET

OPERATION CODE: 40
MNEMONIC CODE: SSE
OPERATION: Ae@U)—A +1

DESCRIPTION: Form the logical sum of the con-
tents of the specified A-register and the j-
determined portion of the contents of U. Store
the result in the next higher A-register.

EXAMPLES:
1.
where (A);. ={000001453030]
and (U); ={000000002222] andj=0
THEN(A+1) = 000001453232
2.
where (A)y = 000000055555]
&)
and (U); = 000000[023232] andj=3

THEN (A + 1) 000000077777

3

where (A), = [000000000012]
O,
and (U); = 0000[0024]7730 andj=6

000000000036

i

THEN (A + 1)

NOTES: For practical purposes, when correspond-
ing bit positions in U and A contain 0’s, a
binary 0 is placed in the same position in 4+ 1.
Under all other conditions, a binary 1 is placed
in the appropriate bit position in A + 1.

The rules governing logical binary addition are
as follows:

This type of logical binary addition is some-
times referred to as ‘‘inclusive OR’’; for ex-
ample, if there are bits in corresponding posi-
tions of either the A-register or the U-register

OR both, then bits will be included in the
corresponding position of the sum.

This instruction is normally used when the pro-
grammer wishes to buff or superimpose individ-
ual bits onto the value contained in the speci-
fied A-register, Binary 1’s in U will cause
binary 1’s to be buffed into corresponding posi-
tions in A + 1, while 0’s in U leave correspond-
ing A values unchanged in A + 1.

Initial U and A values remain unchanged.

EXECUTION TIMES: Alternate Banks 4.0

Same Bank 8.0

SELECTIVE COMPLEMENT

OPERATION CODE: 41
MNEMONIC CODE: scP
OPERATION: (A)® (U)==A +1

DESCRIPTION: Form the logical difference of the
contents of the specified A-register and the j-
determined portion of the contents of U. Store
the result in the next higher A-register.

EXAMPLES:
1.
where (A), = [000000324442]
and (U), = [0000004TT111] andj=0

000000735553

THEN (A + 1)

2.
where (A), =[000000000011]
T
W,
and (U); =[000011]777333 andj=4
THEN(A+1)% = 000000000000
3.
where (A); =[000000224444]
7
and (U); = 7666{77440021 andj=7

—— N ——
1777775532212

sign extended

THEN (A + 1)

it

NOTES: When corresponding bit positions in U
and A contain the same values, a binary 0 is
placed in the corresponding bit position in
A + 1. When U and A contain different values
in identical bit positions, a binary 1 is placed
in the corresponding position in A + 1.

The rules governing logical binary subtraction
are as follows:

This type of binary subtraction is sometimes
referred to as ‘‘exclusive OR’’; for example,
if there are bits in corresponding positions of
either the A or the U registers, bits will be
included in the corresponding bit positions of
the result; however, if corresponding bit posi-
tions of both the A and the U register contain
the same value, a bit is not included in the
corresponding bit position of the result.

In effect, this instruction complements those
bit positions in A that correspond to binary 1’s
in U.

Initial U and A values remained unchanged.

EXECUTION TIMES: Alternate Banks 4.0
Same Bank 8.0

SELECTIVE CLEAR

OPERATION CODE: 42
MNEMONIC CODE: SCL
OPERATION: A)OWU) —»A+1

DESCRIPTION: Form the logical product of the
specified A-register and the j-determined por-
tion of the contents of U. Store the result in
the next higher A-register.

EXAMPLES:
L.
where (A); =[000000006666]
@
and (U); =[000000002222] andj=0

600000002222

THEN (A + 1)

2.
where (A);

1000000043454]

I

o;.
and (U); 77733300{1111} and j=5
|

THEN(A+1); = 000000001010
3.
where (A); =[000011111111]
{*)
and (U); =1010174453232 andj=7
THEN(A+1); = 000000000101

NOTES: When corresponding bit positions in U and
A contain binary 1’s, a binary 1 is placed in the
identical position in A + 1. Under all other
circumstances, a binary 0 is placed in A + 1.

The rules governing logical binary multiplica-
tion are as follows:

A 0 1 1 0
U 1 0 1 0
0 0 1 0

This type of logical binary multiplication is
also referred to as ““logical AND?’; for example,
if a bit is contained in cortesponding positions
of both the A and the U register, a bit will be
included in the corresponding position of the
product.

This instruction is normally used when the pro-
grammer wishes to extract or erase certain bits
from the value contained in the specified A-
register, Each binary 1 in U will transfer the
value in the corresponding bit position in A to
A+ 1. A0 in U causes a 0 to be inserted in the
corresponding bit position in A + 1.

Initial- U and A values remain unchanged.

EXECUTION TIMES: Alternate Bank 4.0
Same Bank 8.0
SELECTIVE SUBSTITUTE

OPERATION CODE: 43
MNEMONIC CODE: Ssu
OPERATION: (UYOM) + A)OM)—=A+1

7-3

DESCRIPTION: Form the logical product of the j-

determined portion of U and the contents of the
Mask register., Form the logical product of the
contents of the specified A-register and the
complement of the contents of the Mask register.
Add the logical products and store the result

in the next higher A-register.

EXAMPLES:
1.
where (U)i = where (A)i =
1333355553333 [222233334444]
and j=0
and (M) = and (M)' =

1777700007777

[000077770000]

1333300003333

+
1000033330000]

THEN (A + 1) =
333333333333

2.
where (U); =

where (A); =

|744244443333]

1000076457222

and j=0
and (M) =

and (M) =?

(777700000000

(000077777777

744200000000

+
1000076457227

THEN (A + 1)j=
144276457222

3.

where (U); = where (A); =

|777777775666| {033344111111]
and j=0

and (M) = and (M)' =

1000000777777 [777777000000]

(0000007756686

+
1033344000000

THEN (A + 1) =
033344775666

NOTES: Before the execution of this instruction,

the desired mask is loaded into the mask regis-
ter (address 102) via the Load R, instruction.

In effect, this instruction forms a new word in
A + 1 on the basis of fields or bits selected
from the words contained in U and A. Each
binaty 1 in the mask will cause the value in
the corresponding bit position in U to be set
(or stored) in the same position in A4 + 1.
Binary 0’s in the mask will cause the values
in corresponding positions in A to be set in
identical positions in A4 + 1.

Initial U and A values remain unchanged.

EXECUTION TIMES: Alternate Banks 4.7

Same Bank 8.7

SELECTIVE EVEN PARITY TEST

OPERATION CODE:
MNEMONIC CODE:
OPERATION:

44
SEP

If (A)®(U) is even parity,
skip NI

DESCRIPTION: If the logical product of the con-

tents of the specified A-register and the j-
determined portion of the contents of U is even
parity, skip the next instruction. If it is odd

parity, continue with the next instruction.-

EXAMPLES:

1.
where (A); =

(000000345672

and (U)=

[777777734444) andj=0

Then Parity of Logical Product

0000003044140

2.
where (R); =

1 000077770000

600132

171616

is odd (total of 5 bits)

and j=4

Then Parity of Logical Product

QOUO 7760000 0, is even (Total of 8 bits) SKIP NI

— N —m——

Extend sign

NOTES: In this instruction, 4 + I is not utilized.

EXECUTION TIMES: NO SKIP SKIP
Alternate Banks 10.0 6.0
Same Bank 14.0 10.0

SELECTIVE ODD PARITY TEST

OPERATION CODE: 45

MNEMONIC CODE: SOP

OPERATION: If (A)® (U) is odd parity,

skip NI

DESCRIPTION: If the logical product of the con-
tents of the specified A-register and the j-
determined portion of the contents of U is odd
parity, skip the next instruction. If it is even
parity, continue with the next instruction.

EXAMPLES:

1.
where (A); =

17777771554444]

and (U)=?

777766661111 andj=0

Then Parity of Logical Product
1777766440000] is even (total of 18 bits)

2.
where (A)j =
555544445555]

and AU) =
033366667777
Then Parity of Logical Product

[0 000000001 lﬂ is odd (total of 3 bits) SKIP NI

and j=7

NOTES: In this instruction,4 + I is not utilized.

EXECUTION TIMES: NO SKIP SKIP
Alternate Banks 10.0 6.0
Same Bank 14.0 10.0

Seven instructions in the UNIVAC 1107 repertoire
provide for shift operations. In these instructions,
the a designator always specifies an arithmetic
register. The j designator in shift instructions
serves as a minor operation code. The seven right-
most bits in the u designator provide the shift
count. A shift count that exceeds 72 places will
not produce a reasonable result,

Instruction execution time is independent of the
number of shifts performed. In the execution of
the first six shift instructions, there is only one
reference to memory. Consequently, the distinc-
tion between alternate core banks and the same
core bank is irrelevant.

Except for circular shifts, the least significant
bits shifted out of the specified arithmetic regis-
ter (or the next higher arithmetic register) are
permanently lost.

SINGLE RIGHT CIRCULAR SHIFT

OPERATION CODE: 73
MINOR OPERATION CODE: j=0
MNEMONIC CODE: SCSH

8. SHIFT INSTRUCTIONS

OPERATION: (A) shifted circularly U places
to the right.
EXAMPLES: |
1.
where (A); = and U =
1000000025555 000003
THEN (A) =
[ﬂsooooooozssﬂ
3 places
2.
where (A); = and U =
000000004444 000012
THEN (A)f =

[jzzzooouooouﬂ
1079 places

NOTES: Bits shifted out of the least significant
position in A reappear in the most significant
position and continue moving to the right until
the shift is completed.

EXECUTION TIME: 4.0

DOUBLE RIGHT CIRCULAR SHIFT

OPERATION CODE: 73
MINOR OPERATION CODE: j=1
MNEMONIC CODE: DCSH

OPERATION: (A, A +1) shifted circularly U
places to the right.
EXAMPLES:
1.
where: (A); (A+1) U
1000600025454l323200000000ﬁ000030
THEN 10
000000000000/ [000254543232]
(A) (A + D
2.
where: (A)i (A+ 1) U
[000000025454] Bz3zoouuonooh000074
6079

L‘THEN
000254543232[[000000000000]
(A) (A + 1)

NOTES: Bits shifted out of the least significant
position in A enter the most significant posi-
tion in A + 1, while bits shifted out of A + I
reappear in the most significant position in A.

EXECUTION TIME: 4.0

SINGLE RIGHT LOGICAL SHIFT

OPERATION CODE: 73
MINOR OPERATION CODE: j=2
MNEMONIC CODE: SLSH

OPERATION: (A) shifted right U places, U
number of 0’s filled into the
left.

EXAMPLES:

1.

where (A); =

(000000015673] andu=000006

= places—>

THEN (A} =
000000000156

2.
where (A); =

000000022424
—5 places m—
THEN (A) =

000000000450

and U=000005

EXECUTION TIME: 4.0

DOUBLE RIGHT LOGICAL SHIFT

OPERATION CODE: 73
MINOR OPERATION CODE: j=3
MNEMONIC CODE: DLSH

OPERATION: (A,A + 1) shifted U places to
the right. U number of 0’s filled in to the left.
EXAMPLES:
1.
where: (A); (A+1); U

[000000012345/]/670000000000/ 000036
304 places—>

THEN
[000000000000]/[000001234567]
(A) (A+ 1)
2.
where: (A) (A+ 1) U
[000000012345[/]670000000000]/ 000102
66 —>
THEN 10
[000000000000[/[000000000000]
(A)f (A+1)f

EXECUTION TIME: 4.0

SINGLE RIGHT ARITHMETIC SHIFT

OPERATION CODE: 73
MINOR OPERATION CODE: j=4

MNEMONIC CODE: SASH
OPERATION: (A) shifted right U places. U
number of sign bits filled in to the left.
EXAMPLES:
1.
where (A); =
000000544400/ anduU=000006
6 places >
THEN (A) =

0000000054144

2.
where (A); =
1777432100000]

———1570 place S————s

and U=000017

THEN (A)f =
|77777717174321]

EXECUTION TIME: 4.0

DOUBLE RIGHT ARITHMETIC SHIFT

OPERATION CODE: 73
MINOR OPERATION CODE: j=5
MNEMONIC CODE: DASH

OPERATION: (A, A + 1) shifted U places to
the right. U number of sign bits filled into the left.
EXAMPLES:
1.
where: (A); (A +1); U
(000000121212[[120000000000} 000036
307¢ places >
000000000000/ [000012121212]
(AX (A+1)f
2.
where: (A); (A +1); U
1734522224444]]000000000005/ 000074
6010 places

THEN
[7777777777717[[7177777777345]

(A)f (A+1)¢
EXECUTION TIME: 4.0
SCALE FACTOR SHIFT
OPERATION CODE: 73
MINOR OPERATION CODE: j=6
MNEMONIC CODE: SFSH

and shifted left cir-
Scaled quantity——mA

QPERATION: (U)—A
cularly until Az # Az,
and shift count—>»A + 1,

DESCRIPTION: The contents of U are transferred
to the specified A-register and shifted left
circularly until bit position 35 is unequal to
bit position 34. The scale-factored number is
then stored in A and the number of shifts in
A+ 1.

EXAMPLES:

L.

where (U) =

[000003334444]

THEN (A)d= and (A + 1) =
[j 333444400000~ 000000000017

1510 places

2.

where (U) =

100001144765 4]

THEN (A)f= and (A + 1) =
[j231175300000t]000000000015

1319 places

3.

where (U) =

1777771333333

THEN (A)= and (A + 1) =

E455555577777H 000000000016
14;q places

NOTES: This instruction will shift the contents

of the specified arithmetic register a maximum
of 35 places.

The number of shifts is stored in the rightmost
bit positions of the next higher arithmeticregis-
ter.

When bit positions 35 and 34 are initially un-
equal, the number is already scaled. In this
case, A + I will contain 0’s.

If U contains all 1’s or all 0’s, (A)f will equal
(U); and (A+ 1) will equal 35.

Normally this instruction is used in operations
involving fractional values when floating-point
arithmetic is not employed.

EXECUTION TIMES: Alternate Banks 6.0

Same Bank 10.0

9. BRANCHING INSTRUCTIONS - SKIP

Forty-one instructions in the UNIVAC 1107 reper-
toire are classified as Branching instructions.
These instructions are executed when the program
reaches a point at which the selection of the next
instruction depends upon certain conditions. In effect,
branching instructions determine a particular pro-
gram path on the basis of whether a specific con-
dition is present. Depending upon the result of
the test (or tests)inherent in the branching instruc-
tion, the program will either execute the next
sequential instruction, or skip or jump to another
instruction.

Twenty-three branching instructions specify skip
operations.* The skip is performed in the follow-
ing manner: If the branching instruction is number
21 in sequence and the test reveals the next se-
quential instruction is not to be executed, P (which
contains the address of the next sequential in-
struction) is incremented by 1. The program then
executes (or skips to) NI + 1 or instruction 23.

In all cases, the program will skip only one in-
struction. Skip instructions are subdivided on the
basis of whether or not they entail a test, a search,
or a masked search.

TEST

Eleven skip instructions call for testing (or de-
termining) the relationship between one value and
another value, or between one value and two other
values. Depending upon the outcome of the test,
the program will skip or take the next sequential
instruction.

In these instructions, the b, h, and i designators
provide for index register modification, incremen-
tation of the modifier, and indirect addressing.
The j designator determines data transfers between
core memory (Z1 or Z2) and the arithmetic section.
The a designator in this instruction specifies
either an arithmetic register or an index register.

* Chapter 10 is devoted to branching instructions that stipu-
late a jump.

9-1

TEST MODIFIER

OPERATION CODE:
MNEMONIC CODE: TMO

OPERATION: If (Ba)17_oo <(U), take NI.
If (Ba)i7-00 >(U), skip NI. In either case,

(Ba)17-00 + (Ba)35— 18— Ba 17-00.

47

DESCRIPTION: If the modifier portion (Q) of the
contents of the index register specified by the
a designator is less than the j-determined por-
tion of the contents of U, take the next instruc-
tion. If it is greater than or equal to the j-deter-
mined portion of U, skip the next instruction.
In either case, add the increment portion (A)
to the modifier portion (Q) and place the result
in the modifier portion.

EXAMPLES:
1.
where U= and (B,); =
1000000000006/ 000005(001234] and j=0
(A) Q)
<

THEN SKIP NI AND

A)+ Q) =(Ba)df= 000005001241

2.
where U = and (B,); =
004555317772 000012[004555] and j=4
@A) Q)
<

THEN SKIP N1 AND

A) + Q) =(By)s = 000012004567

3.

where (U) = and (B); =

043214256741 777772000344 and j=6
B @

THEN TAKE NI AND

(A)+(Q)=(Ba)f = 777772000337

NOTES: In this instruction, the a designator speci~
fies one of sixteen index registers (addresses
0 through 17).

Subtraction is used to determine the magnitude
of the appropriate fields. In this respect, a
positive remainder signifies greater than,
(example 1); a remainder of 0 signifies equal to
(example 2); while a negative remainder signi-
fies less than (example 3).

Only the rightmost 18 bit positions in U and Bg
are involved in the subtraction. Consequently,
when j equals, 0, only the lower half of U is
pertinent to the operation.

EXECUTION TIMES: NO SKIP SKIP
Alternate Banks 4.7 8.7
Same Bank 8.7 12.7

TEST ZERO

OPERATION CODE: 50

MNEMONIC CODE: TZR

OPERATION: If (U) =0, skip NI

DESCRIPTION: If the j-determined portion of U
is equal to 0, skip the next instruction, If it is
not equal to 0, take the next instruction.

NOTES: The a designator is not used in this in-

struction.

EXECUTION TIMES: NO SKIP SKIP
Alternate Banks 4.0 8.0
Same Bank 8.0 12.0

TEST NOT ZERO

OPERATION CODE:
MNEMONIC CODE:
OPERATION:

DESCRIPTION: If the j-determined portion of U is
not equal to 0, skip the next instruction. If it
is equal to 0, take the next instruction,

51
TNZ
If (U) = 0, skip NI

NOTES: The a designator is not used in this in-
struction.

EXECUTION TIMES: NO SKIP SKIP
Alternate Banks 4.0 8.0
Same Bank 8.0 12.0

TEST EQUAL
OPERATION CODE: 52
MNEMONIC CODE: TEQ

OPERATION: If (U) # (A), skip NI

DESCRIPTION: If the j-determined portion of the
contents of U is equal to the contents of the
specified A-register, skip the next instruction.
If it is not equal, execute the next instruction.

EXECUTION TIMES: NO SKIP SKIP
Alternate Banks 4.0 8.0
Same Bank 8.0 12.0

TEST NOT EQUAL

OPERATION CODE:
MNEMONIC CODE:
OPERATION:

53
TNE
If (U) # (A), skip NI

DESCRIPTION: If the j-determined portion of the
contents of U is not equal to the contents of
the specified A-register, skip the next instruc-
tion. If it is equal, execute the next instruction.

EXECUTION TIMES: NO SKIP SKIP
Alternate Banks 4.0 8.0
Same Bank 8.0 12.0

TEST LESS THAN OR EQUAL

OPERATION CODE:
MNEMONIC CODE:
OPERATION:

54
TLE
If (U) < (A), skip NI

DESCRIPTION: If the j-determined portion of the
contents of U is less than or equal to the con-
tents of the specified A-register, skip the next
instruction, If it is greater than the contents of
A, execute the next instruction.

EXECUTION TIMES: NO SKIP SKIP
Alternate Banks 4.0 8.0
Same Bank 8.0 12.0

TEST GREATER THAN

OPERATION CODE:
MNEMONIC CODE:

55
TGR

OPERATION: If (U) > (A), skip NI

DESCRIPTION: If the j-determined portion of the
contents of U is greater than the contents of
the specified A-register, skip the next instruc-
tion. If it is less than or equal to the contents
of A, execute the next instruction.

EXECUTION TIMES: NO SKIP SKIP
Alternate Banks 4.0 8.0
Same Bank 8.0 12.0

TEST WITHIN LIMITS

OPERATION CODE: 56

MNEMONIC CODE: TWL

OPERATION: If (A) < (U) < (A+1),skip

NI

DESCRIPTION: If the j-determined portion of the
contents of U is greater than the contents of
the specified A-register but less than or equal
to the contents of the next higher A-register,
skip the next instruction. If U is less than or
equal to A or greater than A + I, execute the
next instruction.

EXAMPLES:
1.
where (A); = and (A +1)j =
000000004136 [000000023741]
<
and (U)= [000000006555] and j=0
<
THEN SKIP NI
2.
where (A); = and (A+1); =
(000000004224 | (000000012333
>
and (U)= 455660004117 and j=3

<
THEN TAKE NI

3.
where (A); = and (A+1); =
1000000046457] [000000003311

<

000000064444

>

and (U) = and j=3

THEN TAKE NI

NOTES: The next instruction is skipped when the
contents of the specified arithmetic register
(A) are less than the contents of the next higher
arithmetic register (A + 1) and the value of the
contents of U lies between the values (4) and
(A +1). The arithmetic registers, then serve
as parameters. The contents of A provide the
lower limit, while the contents of A + 1, pro-
vide the high limit.

EXECUTION TIMES: NO SKIP SKIP
Alternate Banks 4.7 8.7
Same Bank 8.7 12.7

TEST OUTSIDE LIMITS

OPERATION CODE: 57

MNEMONIC CODE: TOL

OPERATION: If (U<@A)or U)>(A+1),

skip NI

DESCRIPTION: If the j-determined portion of the
contents of U is less than or equal to the con-
tents of the specified A-register or greater than
the contents of the next higher A-register, skip
the next instruction. If it is greater than the
contents of A and less than or equal to the
contents of 4 + 1, execute the next instruction.

EXAMPLES:
1.
where (A)j = and (A + 1) =
[000000004444] [000000022222|
>
and (U)y= [000000000555] and j=0
<
THEN SKIP NI

2.
where (A)j = and (A +1)j =
[000000004444] (000000022222 |
l

and (U)= 000000[033333 | and j=3
>
THEN SKIP NI
3.
where (A); = and (A +1); =
(000000004444 (000000022222 |
<
and (U)= |6666[33337777 and j=7
<
THEN TAKE NI

NOTES: To execute this instruction, the contents
of the specified arithmetic register must be less
than the contents of the next higher arithmetic
register.

EXECUTION TIMES: NO SKIP SKIP
Alternate Banks 4.7 8.7
Same Bank 8.7 12.7

TEST POSITIVE

OPERATION CODE: 60

MNEMONIC CODE: TPO

OPERATION: If (U) > 0, skip NI

DESCRIPTION: If the j-determined portion of U
is greater than or equal to 0, skip the next
instruction. If it is less than 0, execute the
next instruction.

NOTES: In this instruction, the a designator is
not used.

EXECUTION TIMES: NO SKIP SKIP
Alternate Banks 4.0 8.0
Same Bank 8.0 12.0

TEST NEGATIVE

OPERATION CODE: 61
MNEMONIC CODE: TNG
OPERATION: If (U) < 0, skip NI

DESCRIPTION: If the j-determined portion of the
contents of U is less than 0, skip the next in-
struction. If it is greater than or equal to O,
take the next instruction.

NOTES: The a designator is not used in this in-

struction.

EXECUTION TIMES: NO SKIP SKIP
Alternate Banks 4.0 8.0
Same Bank 8.0 12.0

SEARCH

Six UNIVAC 1107 instructions are classified as
Search instructions. These instructions are execu-
ted in the repeat mode; that is, a particular search
instruction will be executed for a specified num-
ber of times or until the object of the search is
obtained, at which point the search will be termina-
ted.

Prior to executing a search instruction, a repeat
count word (Figure 3-4) is loaded into the ap-
propriate R-register (address 101) via the Load R,
instruction. The k portion of this word contains
the number of times the search instruction is to
be executed.

When the main program reaches the point at which
the search instruction is to be executed, the con-
tents of P (the address of the next sequential
instruction) are transferred automatically to ad-
dress 103 (the T-register). Next, the k portion of
the repeat count word is tested against 0, If it is
not equal the two leftmost bit positions are dropped
and the remaining 16-bit k is transferred to P. Now the
actual search operation begins.

Termination Of Repeat Mode

When k is initially equal to 0, the contents of PCR
(the search instruction currently being executed)
are cleared to 0. The address of the next sequen-
tial instruction is then transferred from the T-regis-
ter to P and the reference to memory is initiated.
Accordingly, an initial k& value of 0 prevents
the execution of the search instruction,

When k is initially unequal to 0, the search oper-
ation is initiated in the repeat mode. Each time
the search instruction is executed, P is reduced
by 1 and tested against 0. If P is unequal to 0,
the search instruction is re-executed. When P
equals 0, its contents are transferred back to ad-
dress 101 and the contents of the T-register (the
address of the next sequential instruction) are re-
turned to P. After referencing the P address to
memory, the appropriate instruction is read into
PCR, providing for the resumption of the sequen-
tial mode.

The repeat operation is terminated automatically
when the object of the search is realized before P
reaches 0. Here again, the contents of P are re-
turned to the repeat count register (address 101).
In this case, however, P contains the number of
times remaining for the search instruction to be
executed. The returning of P to address 101 pro-
vides the programmer with an opportunity for pin-
pointing the exact location at which the object
of the search was attained. The contents of the
T-register (the address of the next sequential
instruction) are incremented by 1 — provision is
thus made for the skip — and returned to P for
referencing to memory.

Interrupts

An interrupt occuring during the execution of an
instruction in the repeat mode, before the object
of the search is realized, automatically causes
the contents of P (the number of times remaining
for the instruction to be executed) to be trans-
ferred back to address 101 (the repeat count regis-
ter). The address of the next sequential instruc-
tion is transferred from the T-register to P and
decremented by 1. After decrementation P con-
tains the address of the current instruction (the
search instruction). The interrupt then causes
program control to jump to a fixed address for
entrance into an appropriate subroutine. The
first instruction in the subroutine (a Return Jump)
will transfer the contents of P to a temporary
storage location where it remains for the duration
of the subroutine. The last instruction in the sub-
routine will stipulate a jump to the location at
which P is stored. When the instruction stored at
P has re-entered PCR, the contents of the repeat
count register (the number of times remaining for
the instruction to be executed) are transferred
back to P. Provision is thus made for resuming
the repeat mode at the point of interruption.

If the interrupt occurs after the object of the search
has been attained but before the repeat operation
has terminated, the contents of P are transferred
back to the repeat count register. The contents
of the T-register are incremented by 1 — thereby
providing for the skip — and returned to P. As ex-
plained in the preceding paragraph, program con-
trol is then transferred to the appropriate subrou-

tine. Repeat operations (f designators 62 — 67, and_

71) require 16 microseconds,the combined setup and
terminate time.

Designators

The a designator in a search instruction always
specifies an arithmetic register. The b, h, and i
designators provide for index register modifica-
tion, incrementing the modifier, and indirect ad-
dressing, During the execution of the search in-
structions (62 - 67), the j designator controls
data transfers between core memory (Z1 or Z2)
and the arithmetic section. The j, b, h, and i
designators are effective each time the search
instruction is executed. It is by means of the b
designator that the operand address is increment-
ed (or decremented) each time the instruction is
executed.

With the exception that they are executed in the
repeat mode, all six search instructions (oper-
ation codes 62 through 67) are performed in the
same manner as test instructions 52 through 57
respectively.

SEARCH EQUAL

OPERATION CODE: 62
MNEMONIC CODE: SEQ

OPERATION: If (U); = (A), skip NI.
Repeat k times.

DESCRIPTION: If the j-determined portion of the
contents of U is equal to the contents of the
specified A-register, skip the next instruction.
If it is not equal, re-execute the instruction
until equality is sttained or k reaches 0. When
k reaches 0, execute the next sequential in-

struction.

EXECUTION TIMES: NO SKIP SKIP
Alternate Banks 4.0 4.0
Same Bank 4.0 4.0

SEARCH NOT EQUAL

OPERATION CODE: 63
MNEMONIC CODE: SNE

OPERATION: If (U); # (A), skip NI.
Repeat k times.

DESCRIPTION: If the j-determined portion of the
contents of U is unequal to the contents of the
specified A-register, skip the next instruction.
If it is equal, re-execute the instruction until
inequality is attained or k reaches 0. When
k reaches 0, execute the next sequential in-
struction.,

EXECUTION TIMES: NO SKIP SKIP
Alternate Banks 4.0 4.0
Same Bank 4.0 4.0

SEARCH LESS THAN OR EQUAL

OPERATION CODE: 64
MNEMONIC CODE: SLE

OPERATION: If (U); < (A), skip NI.
Repeat k times.

DESCRIPTION: If the j-determined portion of the
contents of U is less than or equal to the con-
tents of the specified A-register, skip the next
instruction, If it is greater than A, re-execute
the instruction until U is less than or equal to
A or k reaches 0.When k reaches 0, execute the
next sequential instruction.

EXECUTION TIMES: NO SKIP SKIP
Alternate Banks 4.0 4.0
Same Bank 4.0 4.0

SEARCH GREATER THAN

OPERATION CODE: 65
MNEMONIC CODE: SGR

OPERATION: If (U); > (A), skip NI,
Repeat k times.

DESCRIPTION: If the j-determined portion of the
contents of U is greater than the contents of the
specified A-register, skip the next instruction,
If it is less than or equal to A, re-execute the

instruction until itis greater than A or k reaches
0. When k reaches 0, execute the next sequen-
tial instruction.

EXECUTION TIMES: NO SKIP SKIP
Alternate Banks 4.0 4.0
Same Bank 4.0 4.0

SEARCH WITHIN LIMITS

OPERATION CODE:
MNEMONIC CODE:
OPERATION:

66
SWL

If (A) <(U); <(A+1), skip
NI. Repeat k times.

DESCRIPTION: If the j-determined portion of the
contents of U is greater than the contents of the
specified A-register but less than or equal to the
contents of the next higher A-register, skip the
next instruction. If U is less than or equal to 4
or greater than A + I, re-execute the instruction
until the object of the search is attained or k
reaches 0. When &k reaches 0, execute the next
sequential instruction.

EXECUTION TIMES: NO SKIP SKIP
Alternate Banks 4.7 4.7
Same Bank 4.7 4.7

NOTES: The contents of the specified arithmetic
register should be less than the contents of the
next higher arithmetic register.

SEARCH OUTSIDE LIMITS

67
SOL

If (U)i < (A) or (U); >(A+1),
skip NI. Repeat k times,

OPERATION CODE:
MNEMONIC CODE:
OPERATION:

DESCRIPTION: If the j-determined portion of the
contents of U is less than or equal to the con-
tents of the specified A-register or greater than
the contents of the next higher A-register, skip
the next instruction, Otherwise, re-execute the
instruction until the object of the search is at-
tained or k reaches 0. When k reaches 0, exe-
cute the next sequential instruction.

NOTES: The contents of the specified arithmetic
register should be less than the contents of the
next higher arithmetic register.

EXECUTION TIMES NO SKIP SKIP
Alternate Banks 4.7 4.7
Same Bank 4.7 4.7

MASKED SEARCH

Six skip instructions provide for masked search
operations. Prior to execution, the mask register
(address 102) is loaded with an appropriate bit
configuration. Upon execution, the logical product
of the mask register and the U address is tested
against the logical product of the mask register
and the A-register.

The masked search is similar to the search in
that both operate in the repeat mode. With respect
to designators, the masked search and the search
are identical with the single exception that j in a
masked search serves as a minor function code
rather than as an operand determinant.

MASKED SEARCH EQUAL

OPERATION CODE: 71
MINOR OPERATION CODE: j=0
MNEMONIC CODE: MSEQ

OPERATION: If (U);© (M) = (A) ©(M), skip
NI. Repeat k times.

DDSCRIPTION: If the logical product of U and
the mask register is equal to the logical pro-
duct of the specified A-register and the mask
register, skip the next instruction. If it is not
equal, re-execute the instruction until equality
is attained or k reaches 0. When k reaches 0,
execute the next sequential instruction.

EXECUTION TIMES: NO SKIP SKIP
Alternate Banks 4.0 4.0
Same Bank 4.0 4.0

MASKED S EARCH NOT EQUAL

OPERATION CODE: 71
MINOR OPERATION CODE: j=1

MNEMONIC CODE: MSNE

OPERATION: If (U); &) = (A)®(M), skip

NI. Repeat k times.

DESCRIPTION: If the logical product of U and the
mask register is unequal to the logical product
of the specified A-register and the mask regis-
ter, skip the next instruction. Otherwise, re-
execute the instruction until inequality is at-
tained or k reaches 0. When k reaches 0 execute
the next instruction in sequence.

EXECUTION TIMES: NO SKIP SKIP
Alternate Banks 4.0 4.0
Same Bank 4.0 4.0

MASKED SEARCH LESS THAN OR EQUAL

OPERATION CODE: 71
MINOR OPERATION CODE: j=2
MNEMONIC CODE:
OPERATION:

MSLE

If (UiGM) < (A)O M), skip
NI. Repeat k times.

DESCRIPTION: If the logical product of U and the
mask register is less than or equal to the logi-
cal product of the specified A-register and the
mask register, skip the next instruction. If it is
greater, re-execute the instruction until the
object of the masked search is attained or k
reaches 0. When k reaches 0, execute the next
sequential instruction.

EXECUTION TIMES: NO SKIP SKIP
Alternate Banks 4.0 4.0
Same Bank 4.0 4.0

MASKED SEARCH GREATER THAN

OPERATION CODE: 71
MINOR OPERATION CODE: j=3
MNEMONIC CODE: MSGR

OPERATION: If (U);®M) > (AYO M), skip
NI. Repeat k times.

DESCRIPTION: If the logical product of U and the
mask register is greater than the logical product
of the specified A-register and the mask register,
skip the next instruction. Otherwise, re-execute
the instruction until the object of the masked

search is attained or k reaches 0. When k reach-’
es 0, execute the next sequential instruction.

EXECUTION TIMES: NO SKIP SKIP
Alternate Banks 4.0 4.0
Same Bank 400 4.0

MASKED SEARCH WITHIN LIMITS

OPERATION CODE: 71
MINOR OPERATION CODE: j=4
MENMONIC CODE: MSWL

OPERATION: IfAOM<U)oMLA+])
©®(M), skip NI. Repeat k times.

DESCRIPTION: If the logical product of U and the
mask register is greater than the logical product
of the specified A-register and the mask regis-
ter but less than or equal to the logical pro-
duct of the next higher A-register and the mask
register, skip the next instruction. Otherwise,
re-execute the instruction until the object of
the masked search is attained or k reaches 0.
When k reaches 0, execute the next sequential
instruction.

NOTES: The logical product of the specified A-
register and the mask register should be less
than the logical product of the next higher A-
register and the mask register.

EXECUTION TIMES: NO SKIP SKIP
Alternate Banks 4.7 4.7
Same Bank 4.7 4.7

MASKED SEARCH OUTSIDE LIMITS

OPERATION CODE: 71

MINOR OPERATION CODE: j=5
MNEMONIC CODE: MSOL

OPERATION: If (U);OM) <(A) e M) or
(Wi M) > (A +1) ©M), skip
NI. Repeat k times.

DESCRIPTION: If the logical product of U and the
mask register is less than or equal to the logi-
cal product of the specified A-register and the
mask register; or if the logical product of U and

the mask register is greater than the logical
product of the next higher A-register and the
mask register, skip the next instruction. Other-
wise, re-execute the instruction until the ob-
ject of the search is attained or k reaches 0.
When k reaches 0, execute the next sequential
instruction.

NOTES:See notes for Masked Search Within Limits.

EXECUTION TIMES:

Alternate Banks
Same Bank

NO SKIP

4.7
4.7

SKIP

4.7
4.7

10. BRANCHING INSTRUCTIONS -JUMP

Eighteen branching instructions specify jump
operations., The jump is performed in the follow-
ing manner: when conditions are such that the next
sequential instruction is not to be executed, the
program will jump to the instruction stored at the
address contained in U. To execute the jump, the
U address is transferred to P. The contents of U
are then transferred to PCR for execution. Cer-
tain instructions automatically entail the jump
operation.

Unless otherwise stated, the b, h, and i designa-
tors provide for index register modification, in-
crementation of the modifier, and indirect address-
ing. The j designator normally serves as a minor
operation code, while the a designator normally
specifies an arithmetic registet.

The u designator in jump instructions specifies
the address of an instruction rather than the ad-
dress of an operand. When U specifies an address
that may be found in either film or core memory
(0-177 octal) and a jump is called for, the next
instruction will be taken from the specified ad-
dress in core memory (Z1),

INDEX JUMP

OPERATION CODE: 70
MNEMONIC CODE: IXJP

OPERATION: If (CM)ja>0, jump to U. If
(CM)ja < 0, take NI. In either
case, (CM)ja - 1—'>CMja-

DESCRIPTION: If the contents of the specified
control-memory location are greater than O,
jump to the instruction stored at the U address.
Otherwise, execute the next instruction. In
either case, subtract 1 from the contents of
the control-memory location and return the re-
sult to the specified control-memory location.

EXAMPLES:

1.
where (CMja)j
THEN JUMP TO U

0000 0000 0055

i

AND (CM;,), = 0000 0000 0054
2.

where (M) 0000 0000 0000
THEN TAKE NI

AND (CM;,) 7777 7777 1776

NOTES: In this instruction, the j and a designa-
tors are combined to provide the address of
any one of the 128 locations in control-memory.

EXECUTION TIMES: NO JUMP JUMP
Alternate Banks 8.0 4.0
Same Bank 8.0 4.0

10-1

RETURN JUMP

OPERATION CODE; 72
MINOR OPERATION CODE: j=1
MNEMONIC CODE: RTJP

OPERATION: (Py=>Uy;_ oo, jump toU+1

DESCRIPTION: The contents of P are written into
the lower-half of the word stored at U. The
main program then jumps to the instruction
stored at U + 1.

NOTES: In this instruction, the a designator is not
used.

P contains the address of the next instruction.

The upper-half of the contents of U remains
unchanged.

Because P contains 16 bit positions and the
instruction employs a half-word (18 bits) write,
bit positions 16 and 17 in U are forced to O,
Consequently, the h and i designators in the
instruction stored at Uy inhibit incrementation
of the modifier and indirect addressing.

The execution of this instruction always entails
a jump operation.

In effect, the Return Jump combines, in a single
instruction, the address of a subroutine exit
and the transfer of control to the subroutine
itself.

If U contains a film-memory address, a full
word write of the contents of P preceded by
0’s is made into the specified film-memory ad-
dress and control is transferred to the next
following address (U + 1) in core-memory.

EXECUTION TIMES: Alternate Banks 8.0

Same Bank 8.0

POSITIVE BIT CONTROL JUMP

OPERATION CODE: 72
MINOR OPERATION CODE: j=2
MNEMONIC CODE:
OPERATION:

PBJP

If (A)3s =0, jump to U. Always
shift (A) left 1 circularly,

DESCRIPTION: If bit position 35 of the word con-
tained in the specified A-register is equal to O.

10-2

jump to U. If it is not equal, take the next in-
struction. In either case, the contents of A
are shifted circularly one place to the left.

EXAMPLES:

L.

where (A); = 0000 0002 4444
THEN JUMP TO U

AND (A); = 0000 0005 1110
2.

where (A); = 77777733 2222
THEN TAKE NI

AND (A) = 7777 7666 4445

NOTES: The main program will jump to the in-
struction stored in the U address when the
quantity contained in A is positive. When A
contains a negative quantity, the program will
execute the next sequential instruction.

EXECUTION TIMES: NO JUMP JUMP
Alternate Banks 4.0 8.0

Same Bank 4.0 8.0

NEGATIVE BIT CONTROL JUMP

OPERATION CODE: 72
MINOR OPERATION CODE: j=3
MNEMONIC CODE: NBJP

OPERATION: If (A)3s = 1, jump to U. Always
shift (A) left 1 circularly.

DESCRIPTION: If bit position 35 of the word con-
tained in the specified A-register is equal to 1,
jump to U. If it is not equal, take the next in-
struction. In either case, the contents of A are
shifted circularly one place to the left.

EXAMPLES:

1.

where (A); = 7777 7755 3333
THEN JUMP TO U

AND (A) = 7777 7732 6667

2.
where (A)j

= 0000 2222 4444
THEN TAKE NI
AND (A) = 0000 4445 1110

NOTES: When the value contained in A is nega-
tive, the program will jump to the instruction
stored at the U address. The next sequential
instruction is executed when A contains a
positive value.

EXECUTION TIMES: NO JUMP JUMP
Alternate Vanks 4.0 8.0
Same Bank 4.0 8.0

ZERO JUMP

OPERATION CODE: 74

MINOR OPERATION CODE: j=0
MNEMONIC CODE: ZR]P
OPERATION: If (A)=0,jump to U

DESCRIPTION: If the contents of the specified
A-register are equal to 0, jump to the instruc-
tion stored at the U address. If not equal, take
the next sequential instruction.

EXECUTION TIMES: NO JUMP JUMP
Alternate Banks 4.0 8.0
Same Bank 4.0 8.0

NON-ZERO JUMP

OPERATION CODE: 74

MINOR OPERATION CODE: j=1
MNEMONIC CODE: NZJP
OPERATION: If (A) £ 0, jump to U

DESCRIPTION: If the contents of the specified
A-register are unequal to 0, jump to the in-
struction stored at the U address. Otherwise,
take the next sequential instruction.

EXECUTION TIMES: NO JUMP JUMP
Alternate Banks 4.0 8.0
Same Bank 4.0 8.0

POSITIVE JUMP

OPERATION CODE: 74

MINOR OPERATION CODE: j=2

MNEMONIC CODE: POJP
OPERATION: If (A)> 0, jump to U

DESCRIPTION: If the contents of the specified
A-register are greater than or equal to 0, jump
to the instruction stored at the U address.
Otherwise take the next sequential instruction.

EXECUTION TIMES NO JUMP JUMP
Alternate Banks 4.0 8.0
Same Bank 4.0 8.0

NEGATIVE JUMP

OPERATION CODE: 74

MINOR OPERATION CODE: j=3
MNEMONIC CODE:
OPERATION:

NGJP

If(A)<O0,jump to U

DESCRIPTION: If the contents of the specified
A-register are less than 0, jump to the instruc-

tion stored at the U address. Otherwise, take
the next sequential instruction.

EXECUTION TIMES: NO JUMP JUMP
Alternate Banks 4.0 8.0
Same Bank 4.0 8.0

CONSOLE SELECTIVE JUMP

OPERATION CODE: 74
MINOR OPERATION CODE: j=4
MNEMONIC CODE: CSJP

OPERATION:If the 4-bit contents of the adesigna-
tor are equal to the key setting on the console
(1 to 15), jump to U. Otherwise, take the next
sequential instruction.

NOTES: In this instruction, the contents of the a
designator do not refer to an arithmetic regis-
ter.

When the 4-bit contents of the a designator
equal 0, an unconditional jump is made to the
instruction stored at U.

10-3

EXECUTION TIMES: NO JUMP Jume
4.0 4.0

SELECTIVE STOP JUMP

OPERATION CODE: 74

MINOR OPERATION CODE: j=35
MNEMONIC CODE: Ssjp

OPERATION: If any of the 4 bits of the a designa-
tor correspond to a stop-key setting on the
console (1 of 4), the Computer comes to an
orderly stop. On restart, jump to the instruc-
tion stored at U. If the stop condition is not
met, jump to the instruction stored at U.

Bit positions of the a designator and the cor-
responding stop keys are as follows:

WHEN: ag =1 and stop key 1 is set.
ay = 1 and stop key 2 is set.
ap = 1 and stop key 3 is set.

az = 1 and stop key 4 is set.
NOTES:The a designator in this instruction does
not refer to an arithmetic register.

When the a designator is equal to 0, an uncon-
ditional stop is made.

EXECUTION TIMES: NO JUMP JUMP
4.0 4.0

EVEN JUMP

OPERATION CODE: 74

MINOR OPERATION CODE: j=10
MNEMONIC CODE: EV]JP
OPERATION: If (A)g =0, jump toU

DESCRIPTION: If bit position O (the rightmost bit)
of the word contained in the specified A-regis-
ter is equal to 0, jump to the instruction stored
at the U address. If it is not equal, take the
next sequential instruction.

EXECUTION TIMES: NO JUMP JUMP
Alternate Banks 4.0 8.0
Same Bank 4.0 8.0

10-4

ODD JUMP

OPERATION CODE: 74
MINOR OPERATION CODE: j=11
MNEMONIC CODE: ODJP

OPERATION: If (A)g=1,jumptoU

DESCRIPTION: If bit position 0 (the rightmost bit)
of the word contained in the specified A-regis-
ter is equal to 1, jump to the instruction stored
at the U address. If it is not equal, take the
next sequential instruction.

EXECUTION TIMES: NO JUMP JUMP
Alternate Banks 4.0 8.0
Same Bank 4.0 8.0

MODIFIER JUMP

OPERATION CODE: 74

MINOR OPERATION CODE: j=12
MNEMONIC CODE:

OPERATION: If (Ba)y7_go >0, jump to U.
If (By)i7-00 < 0, take NI, In either case,
(Ba)17-00 + (Ba)ss_ 1

MOJP

- Ba17—00'

DESCRIPTION: If the modifier portion (Q) of the
contents of index register specified by the a
designator is greater than 0, jump to the instruc-
tion stored at the U address. If it is less than
or equal to 0, take the next sequential instruc-
tion. In either case, add the increment portion
(A) to the modifier portion (Q) and store the
result in the modifier portion.

EXAMPLES:

1. where (Bg)i
THEN JUMP TO U

= 0000 0400 3333

AND (By)f = 0000 0400 3337
2. where (By)j = 0000 0577 7741
THEN TAKE NI
AND (B,)r ~ 0000 0577 7746

NOTES: In this instruction, the adesignator speci-
fies one of sixteen index registers (addtesses
0 through 17).

The increment is added to the modifier after
the test has been performed.

EXECUTION TIMES: NG JUMP JuMP
Alternate Banks 4.0 8.0
Same Bank 4.0 8.0

LOAD MODIFIER AND JUMP

OPERATION CODE: 74
MINOR OPERATION CODE: j=13
MNEMONIC CODE: LMJP

OPERATION: (P) = Ba 17_q and

jump to U.

DESCRIPTION: The contents of P (the address of
the next instruction) are stored in the modifier
portion (Q) of the contents of the specified
index register. The main program then jumps
to the instruction stored at U.

NOTES: In this instruction, the a designator speci-
fies one of sixteen index registers (addresses
0 through 17).

Because this instruction utilizes a half-word
write, the increment portion (A) of the word
contained in the specified index register is
undisturbed.

This instruction automatically specifies a

jump to the U address.

EXECUTION TIMES: Alternate Banks 4.0

Same Bank 4.0

OYERFLOW JUMP

OPERATION CODE: 74
MINOR OPERATION CODE: j=14
MNEMONIC CODE: OVJP

OPERATION: Jump to U if overflow condition is
set; otherwise take the next sequential in-
struction.

NOTES: This instruction does not utilize the a
designator.

Overflow conditions may be set by instructions
containing operation codes 14 through 21, 24,
and 25. (See page 2—6 for explanation of condi-
tions causing overflow.)

EXECUTION TIMES: NO JUMP JUMP
Alternate Banks 4.0 4.0
Same Bank 4.0 4.0

NO.OVYERFLOW JUMP

OPERATION CODE: 74

MINOR OPERATION CODE: j=15
MNEMONIC CODE: NOJP

OPERATION: Jump to U if overflow condition is
not set; otherwise take the next sequential
instruction.

NOTES: See Overflow Jump.

EXECUTION TIMES: NO JUMP JUMP
Alternate Banks 4.0 4.0
Same Bank 4.0 4.0

CARRY JUMP

OPERATION CODE: 74

MINOR OPERATION CODE: j=16
MNEMONIC CODE:

OPERATION: Jump to U if carry condition is set;
otherwise take the next sequential instruction.

CYJP

NOTES: See Overflow Jump notes.

(See page 2—6 for an explanation of conditions
which set the carry designators.)

EXECUTION TIMES: NO JUMP JUMP
Alternate Banks 4.0 4.0
Same Bank 4.0 4.0

NO-CARRY JUMP

OPERATION CODE: 74

MINOR OPERATION CODE: j=17
MNEMONIC CODE:

OPERATION: Jump to U if carry condition is not
set; otherwise take the next sequential instruc-
tion.

NCJP

NOTES: See Overflow Jump notes.

EXECUTION TIMES: NO JUMP JUMP
Alternate Banks 4.0 4.0
Same Bank 4.0 4.0

10-5

11.

The Block Transfer instruction is used to trans-
fer a specified number of words from one internal
memory area (w) to another (v). Prior to execu-
tion, the appropriate repeat count word is loaded
into the repeat count register (address 101) via
the Load R, instruction. The k portion of this
specifies the number of words to be transmitted.

u Designator

The u designator in this instruction specifies
the base address modified by an index register.

b Designator

The b designator controls the index register modi-
fication of both the W and the V addresses. When
b contains all 0’s, indexing of the W and V ad-
dresses does not occur. In this case, the adesigna-
is ignored.

When b is unequal to 0, the modifier portion of the
index register specified by b is applied to the U
address. The resulting address is the location in
memory from which data will move (w).

BLOCK TRANSFER INSTRUCTION

a Designator

In this instruction, the a designator specifies one
of sixteen index registers. When b is unequal to
0, the modifier portion of the index register speci-
fied by a is applied to the U address. This time,
modification produces the address in memory to
which data will move (v).

h Designator

The h designator in this instruction controls the

incrementing of the modifier portions of both the

index register specified by b and the index regis-
ter specified by a.

j Designator

The j designator in this instruction serves as an
operand determinant. In this instruction, j speci-
fies the bit positions from which data will move,
as well as the bit positions to which data will
move. When j equals 16 or 17 (octal), the write at
the V address is inhibited. However, index regis-
ters are incremented.

11-1

Table 2 shows the j values and corresponding
data transmissions when the block transfer is
made from core memory to core memory. In this
type of transfer, the non-selected portions of the
words contained in the V addresses remain un-
changed.

When the block transfer is made from core memory
to film memory, 36 bits will always be contained
in the film-memory location.

i Designator

In this instruction, the i designator is used to
specify indirect addressing. Cascading of indirect
addresses may be employed. However, a data
transfer will not be made until i equals 0.

When indirect addressing is specified (7 equals 1),
the address contained in the u designator, modi-
fied by the index register specified by the b
designator, provides the address from which the
lower-order 22-bits will be read. When i equals
0, the actual data transfer is begun, using the u,
h, and b designators most recently read into PCR.

Repeat Count

The repeat count is handled inthe same manner as
that described in the explanation of Search in-
structions. In executing a Block Transfer, the re-
peat mode will terminate only when k reaches 0
or an interrupt occurs. An interrupt will terminate
the Block Move in a manner that will allow it to
resume at the actual point of interruption (P de-
cremented by 1 before transmission to temporary
working storage). When k initially equals 0, the
Block Transfer is inhibited and the nextsequential
instruction initiated. In this case the address of
the next instruction will be taken from the lower
half of film-memory location 103.

Sequence Of Events

Once the actual data transfer has begun, the se-
quence of events is as follows:

1. Add Bp lower to u.

2. Read the word (W) stored at the address
formed in step 1.

3. Add Bp upper to Bp lower and store the
result in Bp lower.

W35 - 00 —=V35-00

L Wir—o00—=Vi7-00
2 W35-18—>=V35_138
3 Wi7-00—>V17-00
o W3s_ 15 —=V35_138
5 Wii-00—Vii-00
6 Wa_12—Vo3-1

T W3g5_24 —>V35_24

Wo5 ~ 00— V05 - 00

o Wip-06—Vi1-06
12 Wi7-12—=Vi7-12
13 Wp3_18—>V23-18
W Wyg_ g4 —>V29-24
15 W35-30—>V35-30
16 No Transfer

17 No Transfer

Table 2. Partial Word Designator in Block Transfer

11-2

4. Add B, lower to u.

5. Write the word read in step 2 into memory
at the address formed in step 4.

6. Add B, upper to B, lower and store the
result in By lower,

7. Decrement the repeat count and test against
0. If unequal to 0, return to step 1.

Significantly, throughout the execution of the
Block Transfer, the address contained in the u
designator remains unchanged. Changes in Bp
lower and Ba lower provide the different addresses
to and from which data moves.

BLOCK TRANSFER

OPERATION CODE: 22

MNEMONIC CODE:
OPERATION:

BTR

DESCRIPTION: Transfer the j-determined portion
of the contents of W to the j-determined portion
of V. Execute the instruction the number of
times stipulated in the k portion of the repeat
count register.

NOTES: See preceding paragraphs.

EXECUTION TIMES: 8.0. For practical purposes,
there is no distinction between alternate banks
and the same bank.

Because this instruction utilizes the repeat
mode, an additional 12.0 microseconds are re-
quired for setup and termination of the repeat
count.

(W)= (V). Repeatktimes.

11-3

Three instructions in the UNIVAC 1107 repertoire
are classified as special purpose instructions.
In these instructions, the j designator serves as a
minor operation code. The a designator is not
utilized. The b, h, and i designators may be used
to provide for index-register modification, in-
crementation of the modifier, and indirect address-
ing.

EXECUTE REMOTE INSTRUCTION

OPERATION CODE: 72
MINOR OPERATION CODE: j=10
MNEMONIC CODE: EXRI

OPERATION: Execute the instruction stored at U

NOTES: Upon execution of the current instruction
(operation code 72), P is not incremented.

Operations specified by the current instruction’s
b, h, and i designators are carried out before
the remote instruction is read into PCR.

Remote instructions may be cascaded in the
same manner as indirect addressing.

P is incremented upon execution of the final
remote instruction.

EXECUTION TIME: 4.0, exclusive of the time re-
quired to execute the remote instruction.

12. SPECIAL INSTRUCTIONS

LOAD MEMORY LOCKOUT REGISTER

OPERATION CODE: 72
MINOR OPERATION CODE: j=11
MNEMONIC CODE: LMLR
OPERATION: U, _,—=MLR

DESCRIPTION: Allow programmed writes to occur
in certain areas of core memory while prevent-
ing its occurrence in other areas of core memory.

NOTES: The Memory Lockout instruction allows,
in either or both core banks, the selective lock-
ing-in of groups of consecutive memory loca-
tions in increments of 2048 beginning ataddress
00000 or at any address which is a multiple of 2048,

The execution of the instruction causes the U
portion of the instruction word, as modified by
an index register (if called for), to be trans-
ferred to the Memory Lockout register. The two
high-order bit positions of this 18-bit register
are ignored.

The remaining 16 bits are divided into two
groups of 8 bits each: group 1, bit positions
8-15, controls the selection of the addresses
in core bank 1 which will be locked-in; group 2,

121

bit positions 0-7, controls the selection of the
addresses in core bank 2 which will be locked-
in.

To lock-in an area in either bank it is neces-
sary to indicate both a lower and an upper ad-
dress which will be the start and end of the
locked-in area.

CORE 1 CORE 2
xx | UPPER| LOWER | UPPER | LOWER
171615 1211 87 43 0

Consequently, each 8-bit group is subdivided
into a lower section and an upper section. Each
section contains 4 bit positions. The 4 bit
positions of the lower sections are used to in-
dicate the starting address for locked-in core
and the 4 bit positions of the upper sections
are used to indicate the ending address for
locked-in core as seen in the following table.

ILLUSTRATIVE EXAMPLES:

1.

CORE 1 CORE 2
MLR = Jxx | 0011 | 0000 | 1101 1001
171615 1211 87 43 0

CORE BANK 1: Since the lower value is equal

to 0, the starting address of the locked-in core
area is 00000. The upper value of 3 specifies
an ending address of 081911 or the locked-in
area, All other core addresses are locked-out
against programming writes (as opposed to I/0
writes which are never locked-out).

CORE BANK 2: The lower value of 9 indicates

a starting address of 51200 and the upper value
of 13 gives an ending address of 61439 for the
locked-in area. Again, all other core addresses
in this bank are protected agaifist programmed
writes.

SECTION VALUE CORE BANK 1 SECTION YALUE CORE BANK 2
BINARY - DECIMAL LOWER UPPER BINARY - DECIMAL LOWER UPPER
0000 0 00000 02047 0000 0 32768 34815
0001 1 02048 04095 0001 1 34816 36863
0010 2 04096 06143 0010 2 36864 38911
0011 3 06144 08191 0011 3 38912 40959
0100 4 08192 10239 0100 4 40960 43007
0101 5 10240 12287 0101 5 43008 45055
0110 6 12288 14335 0110 6 45056 47103
0111 7 14336 16383 0111 7 47104 49151
1000 8 16384 18431 1000 8 49152 51199
1001 9 18432 20479 1001 9 51200 53247
1010 10 20480 22527 1010 10 93248 55295
1011 11 22528 24575 1011 11 55296 57343
1100 12 24676 26623 1100 12 97344 59391
1101 13 26624 28671 1101 13 59392 61439
1110 14 28672 30719 1110 14 61440 63487
1111 15 30720 32767 1111 15 63488 65535

12-2

CORE 1 CORE 2
§
2. MLR = |xx 0000 | 0000 | 0000 | 0000
17 16 15 12 11 8 7 4 3

When the Memory Lockout register contains the
above configuration, memory locations 00000-
02047 of core bank 1 are locked-in and memory
locations 32768-34815 of core bank 2 are locked-
in, All other memory locations are locked-out
against programmed writes.

CORE 1 CORE 2
3. MLR = |xx | 1001 | 1000 | 0100 | 0000
171615 1211 87 43

When the Memory Lockout register contains the
above configuration memory locations 16384-
20479 of core bank 1 are locked-in and memory
locations 32768-43007 of core bank 2 are locked-
in.

CORE 1 CORE 2
4 MLR = |xx | 0000 | 1111 | 1111 ! 0000
171615 1211 87 43

Whenever the lower limit, for either core bank,
has a value which is greater than its correspond-
ing upper limit value the whole core bank is
locked-out. Therefore, in this example all the
locations of core bank 1 are locked-out. In ordet
to lock-in all the locations of a core bank, the
lower limit should be set equal to 0 and the
upper limit should be set equal to 15. In this
example all the locations in core bank 2 are
locked-in.

The execution of a Memory Lockout instruc-
tion removes any previously set lockout.

NO OPERATION

OPERATION CODE: 74
MINOR OPERATION CODE: j=6
MNEMONIC CODE: NOOP

OPERATION: Do nothing; continue with the next

sequential instruction.

EXECUTION TIME: 4.0

12-3

13. FLOATING-POINT INSTRUCTIONS

Eight instructions in the UNIVAC 1107 Thin-Film
Memory Computer repertoire provide for floating-
point arithmetic. These instructions, used primari-
ly in scientific computation, alert special circuitry
built into the system. Ensuing floating-point arith-
metic is then performed as a hardware function.

Data that will enter into floating-point calcula-
tions must adhere to the format of the floating-
point word (see Figure 3-3). This format combines
the mantissa, the characteristic, and the sign in a
single word. The characteristic is biased by 128
(200 octal).

In floating-point instructions, the a designator
always specifies an arithmetic register. Index
register modification, incrementation of the modi-
fier, and indirect addressing may be used in con-
junction with every floating-point instruction. The
j designator serves as a minor operation code.

Add, subtract, and multiply floating-point instruc-
tions always result in a 2-word answer, with the
most significant word normalized. The least signi--
ficant word is un-normalized. The quotient result-
ing from the divide instruction is always normal-
ized while the remainder is retained in its original
state.

Data that will enter into floating-point calculations
need not be normalized. Division with un-normal-
ized numbers may not produce logical results.

FLOATING ADD

OPERATION CODE: 76

MINOR OPERATION CODE: j=0

MNEMONIC CODE: FLAD
OPERATION: (A) + (U)—>A,A+1

DESCRIPTION: Form the packed, normalized,
floating-point sum of the numbers contained in
A and U. Store the sum in A and A + 1.

EXAMPLE 1: CHAR. MANTISSA
where (A)j = 264 423456722

and (U) = 250 663543211

THEN (A) = 264 423545276

AND (A+ 1) = 231 321100000

NOTES: The mantissa of U, with the sign of the
characteristic extended to the left, is sent to a
working register in the arithmetic section.
An adjacent register is filled with sign bits:

000663543211 000000000000

The absolute value of the characteristic of U
is subtracted from the absolute value of the
characteristic of A. Because the result is posi-

13-1

tive (+14), the mantissa of U is shifted right
circularly by the difference (14 equals 12 places
or 4 octal digit positions):

000000066354 321100000000

The mantissa of A, with the sign of the charac-
teristic extended to the left, is added to the
most significant word:

000000066354
000423456722

000423545276

The least significant word is packed with the
larger characteristic (264) minus the number of
bit positions in the mantissa (always 33 octal),
and stored in 4 + I:

231 321100000 =——>A + 1

The most significant word 'is normalized and
packed with the larger characteristic minus the
number of positions shifted in normalizing. The
result in stored in A. In the example, normaliz-
ing is not necessary (a binaty 1 is already in
bit position 26):

264 423545276 ——>A
EXAMPLE 2: CHAR. MANTISSA
where (A)j = 253 403217654
and (U) = 5§27 023775245
THEN (A) = 252 613437001
AND (A + 1)y = 577 3717717771

NOTES: See preceding notes.

A characteristic less than 0 in the least signi-
ficant word will cause an interrupt to location
305. A characteristic greater than 377 in the
most significant word will cause an interrupt to
location 306. In either case, the original con-
tents of A and A + I are undisturbed.

EXECUTION TIMES: Alternate Banks 14.0

Same Bank 18.0

FLOATING SUBTRACT

OPERATION CODE: 76
MINOR OPERATION CODE: j=1
MNEMONIC CODE:
OPERATION:

FLSB
(A) - (U)==A, A+1

DESCRIPTION: Subtract the floating-point number

in U from the floating-point number in A. Store
the result in 4 and A + 1.

EXAMPLE: CHAR MANTISSA
where (A); = 275 660000011

and (U)j = 250 420000002

THEN (A) = 275 657777741

AND (A+ 1) = 242 000000200

NOTES: The mantissa of U, with the sign of the

characteristic extended to the left, is sent to a
working register in the arithmetic section. An
adjacent register is filled with sign bits:

000 420000002 000 000000000

The absolute value of the characteristic of U
is subtracted from the absolute value of the
characteristic of A. Because the result is posi-
tive (+25), the mantissa of U is shifted right
circularly by the difference:

13-2

Because the absolute value of the character-
istic of U was arrived at via complementation,
the characteristic of the least significant word
in the result must be complemented before it
is packed.

When there is a negative difference between
characteristics, the mantissa of A, rather than
U, is shifted right circularly. The mantissa of
U is then added to the most significant word.

When the difference between characteristics is
0, mantissas are not shifted prior to addition,

000 000000042 000 000000200

The most significant half of the mantissa of U

is subtracted from the mantissa of A:

000 660000011
000 000000042
000 657777747

The most significant half is normalized and
packed with the larger characteristic minus the
number of positions shifted in normalizing.

The result is stored in A (in the example, the
result is already normalized):

275 657777747—>A

The least significant word is packed with the
larger characteristic minus the number of bit
positions in the mantissa. The result is stored
in A + 1.

242 000000200——>A + 1

If the original characteristic of U had been
larger than that of A, the mantissa of U would
have been complemented prior to the shifting.

The interrupt conditions for Floating Subtract
are the same as those for the Floating Add.

EXECUTION TIMES: Alternate Banks 14.0
Same Bank 18.0

FLOATING MULTIPLY

OPERATION CGDE: 76

MINOR OPERATION CODE: j=2

MNEMONIC CODE: FLMP
OPERATION: A)-U)—=-A,A+1

DESCRIPTION: Multiply the floating-point number
contained in A by the floating-point number con-
tained in U. Store the packed floating-point
product in A and A + 1.

EXAMPLE: CHAR. MANTISSA
where (A); = 174 600000007

and (U)j = 220 500000006

THEN(A)¢ = 213 740000021

AND(A + 1)f= 160 600000124

NOTES: The absolute values of the mantissas of
A and U, with zeros replacing their character-
istics, are multiplied:

000600000007
000500000006
010700000052

000000360000

To conform to the floating-point format, the
double-length product is shifted circularly 27
places to the left:

000360000010 700000052000
Counting right from the binary point (which lies
to the immediate left of bit position 26 in the
most significant word), it is noted that multi-
plication produced a 53-bit result. Consequent-
ly, a left circular shift of one is performed (a
54-bit product is not shifted more than 1 place):
000740000021 600000124000
The bias is subtracted from the sum of the
characteristics. The difference, minus 1 (ac-
cruing from the left shift), is the characteristic
of the most significant word. After packing, this
word is stored in A:

174 (Char.of A) 414 214
220(Char.of U) —200(bias) =1 (leftshift)
414 214 213

213 740000021~—>A

The characteristic of the most significant word,
minus the number of bit positions in the man-
tissa (always 33 octal), is the characteristic of
the least significant word. After packing, this
word is stored in A + I:

213 (Char,of A)
=33

160 160 600000124—A + 1

If the signs of the original floating-point values
had been different, the double-length product
would have been complemented.

Multiplication of 27-bit normalized mantissas
will always result in a product of 53 or 54 bits,

Multiplication of two un-normalized values may
produce an un-normalized result.

Alternate Banks 13.3
Same Bank 17.3

EXECUTION TIMES:

FLOATING DIVIDE

OPERATION CODE: 76
MINOR OPERATION CODE: j=3

13-3

MNEMONIC CODE: FLDV
OPERATION: (A) - (U)=A,A+1

DESCRIPTION: Divide the floating-point number

contained in A by the floating-point number
contained in U. Store the packed, floating-point
quotient in A and the remainder in 4 + 1.

EXAMPLE: CHAR. MANTISSA
where (A); = 174 600000007

and (U); = 150 400000006

THEN (A) = 225 571777716

AND (A + 1) = 171 000000030

NOTES: Division is performed by trial subtractions

13-4

(dividend minus the divisor). If the absolute
value of the mantissa of U is greater than or
equal to the absolute value of the mantissa of
A, 27 subtractions and shifts are performed;
otherwise, 28 subtractions and shifts are per-
formed.

In the subtraction * 0’s replace the characteris-
tics of both A and U. After the first subtraction,
the remainder is shifted one place to the left
while a binary 1 is inserted in the rightmost
digit position in a working register:

000 000 000 110 00D 000 00D 000 000 000 000 111 A
000 000 000 100 000 000 000 000 000 000 000 110 U

010 001 remainder
100 010 left shift

Since the second subtraction will not take, a 0
is placed to the immediate right of the binary 1
previously inserted in the working register. The
previous remainder is again shifted one place
to the left:

000 000 000 100 000 000 000 00O 000 000 000 010
000 000 000 100 000 000 000 000 00O 000 000 110
(subtraction does not take)
1000 100 left shift
After the 27th subtraction and shift, the working
register contains the quotient.

000 5777771776

The remainder, after the final subtraction and
shift, is:

000 000000030

The characteristic of the quotient is determined
in the following manner: the characteristic of

the dividend (174) minus the characteristic of
the divisor (150) plus bias (200). If 28 sub-
tractions had been made, this characteristic
would be reduced by 1. After packing, the
quotient is stored in A.

The characteristic of the remainder is the
characteristic of the dividend minus 27 or 28,
depending upon the number of trial subtractions.
After packing, the remainder is stored in the
next higher arithmetic register (4 +).

If the dividend was negative, the remainder is
complemented. If the signs of the original
dividend and divisor were different, the quo-
tient is complemented.

If the characteristic of the quotient exceeds
377, an overflow interrupt to location 306 oc-
curs. If the characteristic of the remainder is
less than 0, an underflow interrupt to location
305 occurs.

A divide overflow, that is, an interrupt to loca-
tion 307, occurs only when the divisor is plus
or minus 0,

EXECUTION TIMES: Alternate Banks 26.7
Same Bank 30.7

FLOATING POINT UNPACK

OPERATION CODE: 76
MINOR OPERATION CODE: j=4
MNEMONIC CODE: FLUP

OPERATION: Unpack the floating-point number
contained in U. Store the mantissa in 4 + 1 and
the biased characteristic in A.

EXAMPLE: CHAR. MANTISSA
where (U) = 264 423456722

THEN (A +1) = 000 423456722

AND (A) = 000 000000264

where (U) = 527 613437002

THEN (A+1) = 777 613437002

AND (A) = 000 000000250

NOTES: The absolute value of the characteristic
of U is stored in bit positions 0 through 7 in A4,
with 0’s filled in to the left.

* For clarity, the examples and trial subtractions are shown
in binary, rather than octal.

The mantissa of U is stored in A + 1, with sign
bits in the 9 most significant bit positions.

EXECUTION TIMES: Alternate Banks 4.0

Same Bank 8.0

FLOATING POINT NORMALIZE PACK

OPERATION CODE: 76
MINOR OPERATION CODE: j=5
MNEMONIC CODE: FLNP

OPERATION: Form the packed, normalized, float-
ing-point number from the mantissa stored in U
and the characteristic stored in the low-order
bit positions in A. Store the result in A + 1.

MNEMONIC CODE:
OPERATION:

FLCM

Absolute value [(A)g_,,| —

| (U)gg gy | —>A +1

DESCRIPTION: Subtract the absolute value of the
charactetistic of U from the absolute value of
the characteristic of A. Store the absolute
value of the difference in low-order positions

in A + 1.
EXAMPLES: CHAR. MANTISSA
1. where (A) = 264 423456722
and (U) = 250 663543211
THEN (A+1) = 000 000000014
2. where (A) = 253 463217654
and (U) = 5217 023775245
THEN (A+1) = 000 000000003
3. where (A) = 250 663543211
and (U) = 764 423456722
THEN (A+1) = 000 000000014

NOTES: The absolute value of the difference is
stored in low-order positions in 4 + 1, with 0’s

filled in to the left.

EXAMPLES: CHAR. MANTISSA
1. where (U) = 000 423456722

and (A) = 000 000000264

THEN (A+1)= 264 423456722

2. where (V) = 777 613437002

and (A) = 000 000000250

THEN (A+1)= 527 613437002

3. where (U) 777 045667432

and (A) = 000 000000155

THEN (A+1)= 622 456674320

EXECUTION TIMES: Alternate Banks 4.0

Same Bank 8.0

NOTES:The upper 28 bit positions in A are ignored.

The characteristic in A is adjusted according
to the required normalization.

Before storing it in A + I, the characteristic,
after normalization, is complemented when the
the sign of the mantissa in U is negative.

A characteristic overflow will cause an inter-
rupt to location 306. A characteristic underflow
will cause an interrupt to location 305. In either
case, A + 1 is undisturbed.

EXECUTION TIMES: Alternate Banks 7.3
Same Bank 11.3

FLOATING CHARACTERISTIC
DIFFERENCE MAGNITUDE

OPERATION CODE: 76
MINOR OPERATION CODE: j=6

FLOATING CHARACTERISTIC DIFFERENCE

OPERATION CODE: 76

MINOR OPERATION CODE: j=7
FLCD

[(A)z5_ 571 =1 ()34 _py [-A+1

MNEMONIC CODE:
OPERATIONS:

DESCRIPTION: Subtract the absolute value of the
characteristic of U from the absolute value of
characteristic of A, Store the difference in low-

order positions in 4 + 1.

EXAMPLES: CHAR. MANTISSA
1. where (A) = 250 663543211

and (U) = 264 423456722

THEN (A+1l) = 777 7117777763

NOTES: The difference is stored in low-order posi-
in A + 1, with sign bits filled into the left,

EXECUTION TIMES:

Alternate Banks 4.0
Same Bank

8.0

13-5

The Control Console includes the operator’s
control panel, a keyboard and type-printer, and a
control unit for the keyboard and type-printer.
Optionally, a papetr-tape reader and a paper-tape
punch can be connected to the Computer through
the same control unit.

By means of this arrangement, data may enter the
system via the keyboard or the paper-tape reader.
Direct communication from the Computer is made
via the type-printer or the paper-tape punch. The
type-printer permits spot-checking of the program
currently being processed.

Two switches mounted on the control unit permit
manual selection of the keyboard (or the paper-
tape reader) and the typeprinter (or the paper-tape
punch). Selection of a given unit can also be made
through program control.

The input-output units associated with the Control
Console will be discussed in detail in the manual
covering peripheral equipment.

Operator’s Control Panel

This panel provides direct operator communication
with the Computer. The manual controls and indica-
tors allow the operator to perform the following
operations:

1. Stop program execution while allowing input-

output operations to continue.

2. Clear all registers except those in the

input-output section.

3, Master clear all registers including those
in the input-output section.

4. Set the desired starting (or restarting) ad-
dress into the P-register. Six octal-digit
indicators display the contents of the P-
register.

14, CONTROL CONSOLE

5. Start program execution. The program will
start with the execution of the instruction
located at the address contained in the P-
register.

6. Set any of fifteen selective jump switches.
An indicator is lit when the corresponding
jump is selected. A jump can be selected
while a program is running.

7. Set any of four selective stop switches.
When the selection is made, the upper half
of a corresponding indicator is lit. The
lower half of this indicator is lit when the
appropriate stop is made. A stop can be
selected while a program is running,

8. Select one of sixteen channels for the ini-
tial loading of a bootstrap routine.

9. Read (Load) the bootstrap routine.

Four fault or status indicators are also included
on the operator’s control panel, These indicators,
along with examples of the type of conditions
they reveal, are presented below.

Computer Status — excessive temperature; poor
voltage regulation.

Program Faults — illegal operation code;illegal
memory address (an address within a locked-out
memory area),

Peripheral Equipment Fault — loss of power in
a channel synchronizer; disconnected cable.

Initial Loading (Bootstrap Fault) — error oc-
curing during the loading of the bootstrap program.

14-1

AUTOMATIC PROGRAMMING

The Automatic Programming Library for the UNI-
VAC 1107 System will include the following pro-
grams:

m COBOL - A data-processing compiler. The
specifications for Basic COBOL were de-
fined in a Department of Defense publication
dated April, 1960. COBOL 1961, which in-
corporates significant improvements, serves
as the basis for this compiler.

m ALGOL - An algebraic language compiler.
The specifications for this compiling system
were developed jointly by the Association
of Computing Machinery (ACM) Committee
on Programming Languages and the GAMM*
Committee on Programming. The report was
published in the Communications of the
ACM, May and July, 1960.

m FORTRAN - A translator that will accept
problems written in FORTRAN II Language.
This routine will enable problems previously
coded in FORTRAN to be run on the UNIVAC
1107 Thin-Film Memory Computer without
revision.

w SIMULATOR - A routine that will interpreta-
tively execute the instruction repertoire of
the UNIVAC 1107 System on a UNIVAC 1103-A,
1103-AS, or 1105 Computer. By means of this
routine, programs written for the UNIVAC 1107
may be run and corrected, if necessary, be-
fore the Computer itself is available.

m BASIC UTILITY LIBRARY - A library of
routines coded expressly for the UNIVAC
1107 Thin-Film Memory Computer. The fol-
lowing programs will be included in the
utility library:

m ASSEMBLY SYSTEM. An advanced
computer-oriented mnemonic code as-
sembly system will be provided. This
routine will accept instructions con-
taining symbolic operand addresses and
mnemonic function codes and designa-
tors. It will then translate these instruc-
tions into an absolute or relative form,
ready for loading into the Computer.
The assembler will also provide the
means for correcting source code, al-

* Gesellschaft fur Angewandte Mathematik und Mechanik.

14-2

locating assembled programs, produc-
ing parallel output of source and as-
sembled programs, and incorporating
library routines.

EXECUTIVE SYSTEM. A routine that
will automatically accomplish the exe-
cution of runs in compliance with a
predetermined Computer schedule. In
this capacity, the executive routine
will extract the programs that are to be
executed, position them in their oper-
ating locations, and provide for the
time~-sharing of several programs run-
ning in parallel. This routine will also
incorporate special checking features
for the problem run.

SORT-MERGE PROGRAM. A set of rou-
tines to arrange random items in an
ordered sequence. Routines will also
be available for combining two or more
ordered sequences into a single file
(on the basis of information contained
in specified fields of each item).

INPUT-OUTPUT ROUTINES. A set of
routines to perform the input and output
functions for standard peripheral equip-
ment.

DEBUGGING AIDS. A set of routines
to aid the programmer in checking out a
particular program.

FUNCTION EVALUATION ROUTINES.
A set of commonly used mathematical
routines, The initial set will include
sine, cosine, tangent, arc sine, arc
cosine, arc tangent, square root, natural
logarithm, and exponential. These rou-
tines will be compatible with fixed-
point and floating-point arithmetic.

LIBRARIAN ROUTINE. A routine for
building and maintaining a library of
subroutines. It will be capable of in-
serting, deleting, or changing routines
in the library, as well as extracting
routines for use in a particular program.
With this routine, the library may be al-
tered at will to conform to individual
customer requirements.

APPENDIX A. INSTRUCTION REPERTOIRE

EXECUTION
TIME MNEMONI
fl i NAME DESCRIPTION IN « SEC. ¢
Aiternate | Same CODE
Core Core
Banks Bank
01 [0-17 | Store Positive (A)-> U 4.0 8.0 STP
02 Store Negative - A)->U 4.0 8.0 STN
03 Store Magnitude I(A)I-> U 4.0 8.0 STM
04 Store R, (R) > U 4.0 8.0 STR
05 Store Zero 0—> U (Clear U) 4.0 8.0 STZ
06 Store B, (Bs)> U 4.0 8.0 STB
10 Load.Positive w->A 4.0 8.0 LDP
11 Load Negative —(U)y->A 4.0 8.0 LDN
12 Load Positive Magnitude U)I—- A 4.0 8.0 LDM
13 Load Negative Magnitude —1(WI-A 4.0 8.0 LNM
14 Add A+ (U)—> A 4.0 8.0 ADD
15 Subtract A)—(WU)>A 4.0 8.0 SUB
16 Add Magnitude A) + 1 (W)I—> A 4.0 8.0 ADM
17 Subtract Magnitude A)—1W)I->A 4.0 8.0 SBM
20 Add and Load A+ U)=>A+1 4.0 8.0 ADL
21 Subtract and Load A—U)>A+1 4.0 8.0 SBL
227 Block Transfer (W)i > (V)irepeated k times. 8.0 8.0 BTR
Initial V; address is u 4 (By) 17..0, and subse-
quent addresses are formed by incrementa-
tion by (By)3s-15. Similarly, V, addresses are
u 4 (Ba)i7-0 incremented by (B,)3s.1g.
23 Load R, (U) > R, 4.0 8.0 LDR
24 Add to B, (Ba) + (U) » B, 4.0 8.0 ADB
25 Subtract from B, (Ba) — (U) > B, 4.0 8.0 SBB
26 Load B, Modifier Only (U) - Bai7g 4.0 8.0 LBM
27 Load B, (U) > B, 4.0 8.0 LDB
30 Multiply Integer (A)s (UW)>AA+1 12.0 16.0 MPI
31 Muitiply Single (Integer) (A)* (U)-> A 12.0 16.0 MPS
32 Multiply Fractional A+ (U)>AA+1 12.0 |16.0 MPF
34 Divide (Integer) (A, A+ 1) =+ (U); Quotient > A 313 35.3 DvI
Remainder—> A + 1
35 Divide Single and Load (Fractional) (A) = (U); Quotient> A + 1 313 35.3 DVL
No Remainder
36 Divide (Fractional) (A, A+ 1) = (U); Quotient> A 31.3 35.3 DVF
Remainder— A 4- 1
40 Selective Set (A) > A+ 1, Then set (A 4 1), for (U),=1 40 8.0 SSE
i.e., (A) @ (V)>A+1
41 Selective Complement f(A) (—> A +11. Then complement (A + 1), 4.0 8.0 SCP
or (U), =
e, ADW>A+1
42 Selective Clear fﬁ; - A1+ 1. Then clear (A + 1), for 4.0 8.0 SCL
n—
e, (MOMU)>AF1
43 Selective Substitute anh) - A1+ 1. Then (U)y > (A + 1), for 4.7 8.7 SSuU
)n =
e, AOMY+ (WO M) >A+1
44 Selective Even Parity Test If [(A) ® (U)] is even parity, Skip Ni SEP
No Skip| 6.0 | 10.0
Skip 100 | 14.0
45 Selective Odd Parity Test If [(A) ® (U)] is odd parity, Skip NI SOP
No Skip| 6.0 10.0
Skip 10.0 | 14.0
47 Test Modifier If (Ba)i7-0 < (U), take NI; If (By)1720 > (U), TMO
Skip. In either case, No Skip | 4.7 8.7
(Ba)17-0 + (Ba)as1s = Baiz-o Skip 87 |12.7
50 Test Zero Skip Ni if (U)=0 No Skip| 4.0 8.0 TZR
Skip 8.0 | 12.0
51 Test Not Zero Skip N1 if (U) < O No Skip| 4.0 8.0 TNZ
Skip 80 | 120
52 Test Equal Skip NI if (U) = (A) No Skip| 4.0 8.0 TEQ
Skip 8.0 | 12.0
53 Test Not Equal Skip NI if (U) 5= (A) No Skip| 4.0 8.0 TNE
Skip 8.0 | 120
54 Test Less Than or Equal Skip Nl if (U) < (A) No Skip| 4.0 8.0 TLE
Skip 8.0 | 120
55 Test Greater Than Skip NI if (U) > (A) No Skip| 4.0 8.0 TGR
Skip 8.0 | 120
56 Test Within Limits SkipNIif (A) < (V< (A+ 1) No Skip| 4.7 8.7 TWL
Y (Note: (A) < (A +1)) Skip 8.7 12.7
57 Test Outside Limits Skip NIif (U) < (A)or(U) > (A+ 1) No Skip| 4.7 8.7 TOL
(Note: (A) < (A + 1)) Skip 87 | 12.7
TRepeat operations 62-67, 71 take 16 » sec combined setup and termination time. The block transfer (22) A—1

takes 12 1 sec combined setup and termination time.

INSTRUCTION REPERTOIRE

EXECUTION
TiME MNEMONIC
f|ij NAME DESCRIPTION IN « SEC.
Alternate | Same CODE
Core Core
Banks Bank
60 {0-17 | Test Positive Skip Nl'if (U) >0 No Skip 4.0 8.0 TPO
_ Skip 80 |12.0
61 Test Negative Skip N1 if (U) <O No Skip 4.0 8.0 TNG
. _ Skip 8.0 | 12.0
627 Search Equal Skip NI if (U); = (A) No Skip 4.0 4.0 SEQ
Repeated k times Skip 4.0 4.0
637 Search Not Equal Skip NI if (U); 3¢ (A) No Skip 4.0 4.0 SNE
Repeated k times Skip 4.0 4.0
647 Search Less Than or Equal Skip NI if (U); < (A) No Skip 4.0 4.0 SLE
Repeated k times Skip 4.0 4.0
651 Search Greater Than Skip NI if (U); > (A) No Skip 4.0 4.0 SGR
Skip 4.0 4.0
6671 Search Within Limits Skip NIif (A) < (U)i<(A+1) No Skip 4.7 4.7 SWL
(Note: (A) <'(A+1)) Skip 4.7 4.7
67% Search Outside Limits Skip NIif (U); < (A) or (U) > (A41) No Sknp 4.7 4.7 SOL
! (Note: (A) < (A + Skip 4.7 4.7
70 | ¥ | index Jump If (CM); > O, Jump to 2 No Jump 80 | 80 IXJP
(CM);a < O, Take NI Jump 4.0 4.0
Then (CM);; — 1 > CM;,
NOTE: j in this instruction serves with the
a-designator to specify any one of the 128
words of Control Memory.
717 *
00 Masked Search Equal Skip NI if (U); ® (M) = (A) ©® (M) No Skip 4.0 4.0 MSEQ
Repeated k times Skip 4.0 4.0
01 Masked Search Not Equai Skip NI if (U); © (M) 5 (A) © (M) No Skip 4.0 4.0 MSNE
Repeated k times Skip 4.0 4.0
02 Masked Search Less Than Skip NI if (U); © (M) < (A) © (M) No Skip 4.0 4.0 MSLE
or Equal Repeated k times Skip 4.0 4.0
03 Masked Search Greater Than Skip NI if (U)i © (M)> (A) © (M) No Skip 4.0 4.0 MSGR
Repeated k times Skip 4.0 4.0
04 Masked Search Within Limits Skip NI if (A) © (M) < (U); © (M) MSWL
<(A+1D0O M) No Skip 4.7 4.7
— (Note: (A) O (M) < Skip 4.7 4.7
A+1)O M)
Repeated k times
05 Masked Search Outside Limits Skip NI if (U)i © (M) < (A) or MSOL
WOM<A+L1 No Skip 4.7 4.7
(Note: (A) O (M) < Skip 4.7 4.7
, (A+1)OQ M)
Repeated k times
72 *
00 | Wait for Interrupt The computer program sequence stops 4.0 WAIT
(i.e., P is not advanced). The wait condi-
tion is removed by an interrupt.
01 Return Jump (P)> Ujzpand Jumpto U + 1 8.0 8.0 RTJP
02 | Positive Bit Control Jump If (A)35 =0, Jump to U No Jump 4.0 4.0 PBJP
Shift (A) left one in either case Jump 8.0 8.0
03 Negative Bit Control Jump If (A)ss =1, Jump to U No Jump 4.0 4.0 NBJP
Shift (A) left one in either case Jump 8.0 8.0
04 | Add Halves (Ah7-0 + (Uh70 = Air-o 4.0 8.0 ADDH
(A)3s-18 + (U)zs-18—> Ass.as
05 | Subtract Halves (ANr7-0 — (U700~ Ar7g 4.0 8.0 SUBH
(A)3s.18 — (U)3s.18 > Azs-1s
06 Add Thirds (A)as--24 + (U)35.-24 = Aszs4 4.0 8.0 ADDT
(A)23-12 + (U)2z12 > Azzaz
(A0 + (W0 > Anro
07 | Subtract Thirds (A)3s..24 — (U)3s..24 > Ass.o4 4.0 8.0 SUBT
(A)23.12 — (U)2z12 => Az.yz
(A)110 — (Uni-o = Ano
10 Execute Remote Instruction Execute the Instruction at U 4.0 —_ EXRI
-+ Execution Time
11 Load Memory Lockout Register Us.o > MLR 4.0 — LMLR
ForUp—1 lockout 0—4095
Uy=1 lockout 4096—8191
U;=1 lockout 8192—16383
Us=1 lockout 16384—32767
Us=1 lockout applies to 1st BANK
Us==1 lockout applies to 2nd BANK
734 *
00 | Single Right Circular Shift} Shift (A) right U places circularly 4.0 SCSH
01 Double Right Circular Shift Shift (A, A 4+ 1) right U places circularly 4.0 DCSH
02 Single Right Logical Shift Shift (A) right U places, end off; fill with 4.0 SLSH
zeros (Max. Shift -— 36)

*j serves as part of the Function Code

T Repeat operations 62-67, 71 take 16 » sec combined setup and termination time. The block transfer (22)
takes 12 x sec combined setup and termination time.

Iinstruction execution time is independent of the number of shifts performed (e.g. a shift of 72 takes 4 microseconds). There
are no memory references in the first six shift instructions, 73 00 — 73 05; consequently, the distinction between alternate core

banks and the same core bank is irrelevant.

INSTRUCTION REPERTOIRE

EXECUTION
TIME
j NAME DESCRIPTION IN = SEC. MN(I:EQA::JIC
Alternate | Same
Core Core
Banks Bank
03 Double Right Logical Shift Shift (A, A 4 1) right U places, end off; 4.0 DLSH
fill with zeros. (Max. Shift = 72)
04 | Single Right Arithmetic Shift Shift (A) right U places, end off; fill with sign bits. 4.0 SASH
05 | Double Right Arithmetic Shift Shift (A, A + 1) right U places, end off; 4.0 DASH
fill with sign bits. (Max. Shift —72)
06 | Scale Factor Shift (U) > A, shift A left circularly until Azs 5= Aag 6.0 10.0 SFSH
or until A has been shifted 36 times. Store
the scaled quantity in A and the number of
shifts that occurred in A + 1.
74 ®
00 | Zero Jump Jumpto U if (A)=0 No Jump 4.0 4.0 ZRJP
Jump 8.0 8.0
01 Non-zero Jump Jumpto U if (A) <0 No Jump 4.0 4.0 NZJP
Jump 8.0 8.0
02 Positive Jump Jumpto Uif (A) >0 No Jump 4.0 4.0 POJP
- Jump 8.0 8.0
03 Negative Jump Jumpto Uif (A) <O No Jump 4.0 4.0 NGJP
Jump 8.0 8.0
04 | Console Selective Jump Jump to U if A = key setting on console (1 of 15) 4.0 4.0 CSJP
05 | Selective Stop Jump Stop if A = stop key setting on console (1 of 4), 4.0 4.0 SSJP
always jumpto U
06 No Operation Do Nothing; continue with Ni 4.0 4.0 NOOP
07 Enable All External Interrupts Jump to U and permit interrupts to occur 4.0 4.0 EiJP
and Jump
10 | Even Jump Jumpto U if (A)g=20 No Jump 4.0 4.0 EVJP
Jump 8.0 8.0
11 | Odd Jump Jumpto Uif (A)g=1 No Jump 4.0 4.0 ODJP
Jump 8.0 8.0
12 Modifier Jump If (Ba)17-0 > 0, Jumpto U No Jump 4.0 4.0 MOJP
If (Ba)17-0 < O, Take NI Jump 8.0 8.0
In either case (Ba)17.-0 + (Ba)3s-18 = Baiz-o
13 Load Modifier and Jump (P) > (Ba)17--0 and Jump to U 4.0 4.0 LMJP
14 | Overflow Jump Jump to U if overflow cond. is set 4.0 4.0 ovJpP
15 No-Overflow Jump Jump to U if overflow cond. is not set 4.0 4.0 NOJP
16 | Carry Jump Jump to U if carry cond. is set 4.0 4.0 CYJpP
17 No-Carry Jump Jump to U if carry cond. is not set 4.0 4.0 NCJP
75 *
00 | Initiate Input Mode (U) - input control word a, and initiate 4.0 8.0 1HPM
input mode on channel a.
01 | Initiate Monitored Input Mode (U) - input control word a, and initiate 4.0 8.0 IMIM
input mode on channel a with monitor.
02 Input Mode Jump Jump to U if channel a is in the input mode. 4.0 4.0 IMJP
03 | Terminate Input Mode Terminate input mode on channel a. 4.0 4.0 TIPM
04 | Initiate Output Mode (U) = output control word a, and initiate 4.0 8.0 I10PM
output mode on channel a.
05 | Initiate Monitored Output Mode (U) - output control word a, and initiate 4.0 8.0 IMOM
output mode on channel a with monitor.
06 | Output Mode Jump Jump to U if channel a is in the output mode. 4.0 4.0 OoMJP
07 | Terminate Output Mode Terminate output mode on channel a. 4.0 4.0 TOPM
10 Initiate Function Mode (U) - output control word a, and initiate 4.0 8.0 IFNM
function mode on channel a.
11 | Initiate Monitored Function Mode (U) - output control word a, and initiate 4.0 8.0 IMFM
) function mode on channel a with monitor.
12 | Function Mode Jump Jump to U if channel a is in the function mode. 4.0 4.0 FMJP
13 | Force External Transfer Request external function or output word 4.0 4.0 FEXT
on channel a.
14 | Enable All External Interrupts All external interrupts are permitted to occur. 4.0 4.0 EAE|
15 | Disable All External interrupts All external interrupts are prevented 4.0 4.0 DAEI
from occurring.
16 | Enable Single External Interrupt An external interrupt on channel a 4.0 4.0 ESEI
is permitted to occur.
17 | Disable Single External Interrupt An external interrupt on channel a 4.0 4.0 DSEI
76 . is prevented from occurring.
00 | Floating Add A+ W->AAF1 14.0 | 18.0 FLAD
01 Floating Subtract AA—(U)>A ALl 14.0 | 18.0 FLSB
02 | Floating Multiply (A) » (W>AA+1 133 | 173 FLMP
03 | Floating Divide (A) = (U); Quotient > A 26.7 | 30.7 FLDV
. Remainder > A 1
04 Floating Point Unpack Unpack (U), store mantissa in A 4 1 and store 4.0 8.0 FLUP
. . the biased characteristic in A
05 | Floating Point Normalize Pack Normalize (A) pack with biased characteristic 7.3 113 FLNP
from (U) and store at A + 1
06 | Floating Characteristic
Difference Magnitude Absolute value of |(A)3e.27] —| (U)asr] > A+ 1 4.0 8.0 FLCM
07 Floating Characteristic
Difference 4.0 8.0 FLCD

‘(A)Bd--v'—l(U)u..n'—) A+1

Romington Rand ¥Wnivac

DIVISION OF SPERRY RAND CORPORATION

TN UT2463

s

	001
	002
	003
	01-01
	01-02
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	07-01
	07-02
	07-03
	07-04
	07-05
	08-01
	08-02
	08-03
	08-04
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	10-01
	10-02
	10-03
	10-04
	10-05
	11-01
	11-02
	11-03
	12-01
	12-02
	12-03
	13-01
	13-02
	13-03
	13-04
	13-05
	14-01
	14-02
	A-01
	A-02
	A-03
	xBack

